リーマン・ゼータ関数の微分の極限
リーマン・ゼータ関数の微分の極限
リーマン・ゼータ\(\zeta\left(s\right)\)関数の微分の極限について次が成り立つ。
\[ \lim_{x\rightarrow0}x^{n+1}\zeta^{\left(n\right)}\left(1\pm x\right)=\pm\left(-1\right)^{n}n! \]
リーマン・ゼータ\(\zeta\left(s\right)\)関数の微分の極限について次が成り立つ。
\[ \lim_{x\rightarrow0}x^{n+1}\zeta^{\left(n\right)}\left(1\pm x\right)=\pm\left(-1\right)^{n}n! \]
(1)
\[ \lim_{x\rightarrow0}x\zeta\left(1\pm x\right)=\pm1 \](2)
\[ \lim_{x\rightarrow0}x^{2}\zeta^{\left(1\right)}\left(1\pm x\right)=\mp1 \](3)
\[ \lim_{x\rightarrow0}x^{3}\zeta^{\left(2\right)}\left(1\pm x\right)=\pm2 \](4)
\[ \lim_{x\rightarrow0}x^{4}\zeta^{\left(3\right)}\left(1\pm x\right)=\mp6 \]\begin{align*}
\lim_{x\rightarrow0}x^{n+1}\zeta^{\left(n\right)}\left(1\pm x\right) & =\lim_{x\rightarrow1}\left(\pm\left(x-1\right)\right)^{n+1}\left(\pm1\right)^{n}\frac{d^{n}}{dx^{n}}\zeta\left(x\right)\cmt{1\pm x\rightarrow x}\\
& =\pm\lim_{x\rightarrow1}\left(x-1\right)^{n+1}\frac{d^{n}}{dx^{n}}\left(\frac{1}{x-1}+\sum_{k=0}^{\infty}\frac{\left(-1\right)^{k}}{k!}\gamma_{k}\left(x-1\right)^{k}\right)\\
& =\pm\lim_{x\rightarrow1}\left(x-1\right)^{n+1}\left(\frac{P\left(-1,n\right)}{\left(x-1\right)^{n+1}}+\sum_{k=0}^{\infty}\frac{\left(-1\right)^{k}}{k!}P\left(k,n\right)\gamma_{k}\left(x-1\right)^{k-n}\right)\\
& =\pm\lim_{x\rightarrow1}\left(P\left(-1,n\right)+\sum_{k=0}^{\infty}\frac{\left(-1\right)^{k}}{k!}P\left(k,n\right)\gamma_{k}\left(x-1\right)^{k+1}\right)\\
& =\pm P\left(-1,n\right)\\
& =\pm\left(-1\right)^{n}n!
\end{align*}
ページ情報
| タイトル | リーマン・ゼータ関数の微分の極限 |
| URL | https://www.nomuramath.com/tsklhmai/ |
| SNSボタン |
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数のハンケル経路積分
\[
\zeta\left(s,\alpha\right)=-\frac{\Gamma\left(1-s\right)}{2\pi i}\int_{C}\frac{\left(-z\right)^{s-1}e^{-\alpha z}}{1-e^{-z}}dz
\]
偶数ゼータの通常型母関数
\[
\sum_{k=1}^{\infty}\zeta(2k)x^{2k}=\frac{1}{2}\left(1-\pi x\tan^{-1}\left(\pi x\right)\right)
\]
完備リーマンゼータ関数の関数等式
\[
\xi(s)=\xi(1-s)
\]
リーマン・ゼータ関数(フルヴィッツ・ゼータ関数)のローラン展開時のスティルチェス定数(一般化スティルチェス定数)
\[
\gamma_{k}=\lim_{n\rightarrow\infty}\left(\left(\sum_{j=1}^{n}\frac{\log^{k}j}{j}\right)-\frac{\log^{k+1}n}{k+1}\right)
\]

