ガンマ関数と階乗の関係
\(n\in\mathbb{N}_{0}\)とすると、以下が成り立つ。
\[ \Gamma(n+1)=n! \]
\begin{align*} \Gamma(n+1) & =\Gamma(1)\prod_{k=1}^{n}k\\ & =n! \end{align*}
ページ情報
タイトル | ガンマ関数と階乗の関係 |
URL | https://www.nomuramath.com/tpc82pia/ |
SNSボタン |
ガンマ関数の漸化式
\[
\Gamma(z+1)=z\Gamma(z)
\]
ガンマ関数の半整数値
\[
\Gamma\left(\frac{1}{2}+n\right)=\frac{(2n-1)!}{2^{2n-1}(n-1)!}\sqrt{\pi}
\]
第1種・第2種不完全ガンマ関数の定義
\[
\Gamma\left(a,x\right)=\int_{x}^{\infty}t^{a-1}e^{-t}dt
\]