ガンマ関数と階乗の関係
\(n\in\mathbb{N}_{0}\)とすると、以下が成り立つ。
\[ \Gamma(n+1)=n! \]
\begin{align*} \Gamma(n+1) & =\Gamma(1)\prod_{k=1}^{n}k\\ & =n! \end{align*}
ページ情報
タイトル | ガンマ関数と階乗の関係 |
URL | https://www.nomuramath.com/tpc82pia/ |
SNSボタン |
第1種・第2種不完全ガンマ関数の微分
\[
\frac{\partial\Gamma\left(a,x\right)}{\partial x}=-x^{a-1}e^{-x}
\]
ガンマ関数の漸化式
\[
\Gamma(z+1)=z\Gamma(z)
\]
第1種・第2種不完全ガンマ関数の定義
\[
\Gamma\left(a,x\right)=\int_{x}^{\infty}t^{a-1}e^{-t}dt
\]
ガンマ関数・ディガンマ関数・ポリガンマ関数の定義
\[
\Gamma(z)=\int_{0}^{\infty}t^{z-1}e^{-t}dt
\]