離散距離は距離空間

離散距離は距離空間
集合\(X\)に対し距離\(d:X\times X\rightarrow\mathbb{R}\)を
\[ d_{0}\left(\boldsymbol{x},\boldsymbol{y}\right)=\begin{cases} 0 & \boldsymbol{x}=\boldsymbol{y}\\ 1 & \boldsymbol{x}\ne\boldsymbol{y} \end{cases} \] で定めると、\(d_{0}\)は距離空間になる。
この距離を離散距離、距離空間を離散距離空間という。

非退化性

\(\boldsymbol{x}=\boldsymbol{y}\)のとき、明らかに\(d_{0}\left(\boldsymbol{x},\boldsymbol{y}\right)=0\)となるので\(\boldsymbol{x}=\boldsymbol{y}\Rightarrow d_{0}\left(\boldsymbol{x},\boldsymbol{y}\right)=0\)
\(d_{0}\left(\boldsymbol{x},\boldsymbol{y}\right)=0\)のとき、明らかに\(\boldsymbol{x}=\boldsymbol{y}\)なので、\(d_{0}\left(\boldsymbol{x},\boldsymbol{y}\right)=0\Rightarrow\boldsymbol{x}=\boldsymbol{y}\)となる。
故に\(\boldsymbol{x}=\boldsymbol{y}\Leftrightarrow d_{0}\left(\boldsymbol{x},\boldsymbol{y}\right)=0\)となり非退化性は満たされる。

対称性

\begin{align*} d_{0}\left(\boldsymbol{x},\boldsymbol{y}\right) & =\begin{cases} 0 & \boldsymbol{x}=\boldsymbol{y}\\ 1 & \boldsymbol{x}\ne\boldsymbol{y} \end{cases}\\ & =d_{0}\left(\boldsymbol{y},\boldsymbol{x}\right) \end{align*} となるので、対称性は満たされる。

3角不等式

\(\boldsymbol{x}=\boldsymbol{z}\)のとき、
\begin{align*} d_{0}\left(\boldsymbol{x},\boldsymbol{z}\right) & =0\\ & \leq d_{0}\left(\boldsymbol{x},\boldsymbol{y}\right)+d_{0}\left(\boldsymbol{y},\boldsymbol{z}\right) \end{align*} となる。
\(\boldsymbol{x}\ne\boldsymbol{z}\)のとき、
\(\boldsymbol{x}\ne\boldsymbol{y}\)または\(\boldsymbol{y}\ne\boldsymbol{z}\)なので、\(d_{0}\left(\boldsymbol{x},\boldsymbol{y}\right)=1\)または\(d_{0}\left(\boldsymbol{y},\boldsymbol{z}\right)=1\)となるので、
\begin{align*} d_{0}\left(\boldsymbol{x},\boldsymbol{z}\right) & =1\\ & \leq d_{0}\left(\boldsymbol{x},\boldsymbol{y}\right)+d_{0}\left(\boldsymbol{y},\boldsymbol{z}\right) \end{align*} となる。
故に\(\boldsymbol{x}=\boldsymbol{y}\)でも\(\boldsymbol{x}\ne\boldsymbol{z}\)でも3角不等式を満たす。

-

これより、非退化性・対称性・3角不等式を満たすので離散距離は距離空間になる。

ページ情報
タイトル
離散距離は距離空間
URL
https://www.nomuramath.com/tmnlhhna/
SNSボタン