1=2の証明
1=2の証明
\[ a=b \] とします。
両辺に\(a-2b\)を足します。
\[ 2a-2b=a-b \] \(a-b\)でまとめると、
\[ 2\left(a-b\right)=a-b \] となるので、両辺を\(a-b\)で割ると、
\[ 2=1 \] となります。
これはどこが間違えているでしょうか?
\[ a=b \] とします。
両辺に\(a-2b\)を足します。
\[ 2a-2b=a-b \] \(a-b\)でまとめると、
\[ 2\left(a-b\right)=a-b \] となるので、両辺を\(a-b\)で割ると、
\[ 2=1 \] となります。
これはどこが間違えているでしょうか?
最初に\(a=b\)としているので\(a-b\)は0であるが、\(a-b\)で割ってしまっている。
つまり0で割っているのでこのようなことが起こる。
つまり0で割っているのでこのようなことが起こる。
ページ情報
タイトル | 1=2の証明 |
URL | https://www.nomuramath.com/sdlxlfzf/ |
SNSボタン |
x²-x+1で割った余り
$x^{1000}$を$x^{2}-x+1$で割った余り
log₂3とlog₃5の大小比較
\[
\log_{2}3\lesseqgtr\log_{3}5
\]
2乗同士の差が素数のときその差はいくつになる?
$m^{2}-n^{2}$が素数のとき、$m-n$は?
eのπ乗とπのe乗の大小比較
\[
e^{\pi}\lesseqgtr\pi^{e}
\]