単位分数とエジプト式分数の定義
単位分数とエジプト式分数の定義
(1)単位分数
真分数で分子が1の分数を単位分数という。(2)エジプト式分数
ある分数を同じ単位分数を用いず複数(2つ以上)の単位分数の和で表したものをエジプト式分数という。(1)単位分数の例
\[ \frac{1}{2},\frac{1}{3},\frac{1}{4} \] \(\frac{1}{1}\)は真分数ではないので単位分数ではない。(2)エジプト式分数の例
\[ \frac{1}{2}+\frac{1}{3},\frac{1}{2}+\frac{1}{3}+\frac{1}{6} \] \(\frac{1}{3}+\frac{1}{3}\)は同じ単位分数が使われているのでエジプト式分数ではない。ページ情報
| タイトル | 単位分数とエジプト式分数の定義 |
| URL | https://www.nomuramath.com/oqy8tpfj/ |
| SNSボタン |
等差数列・等比数列・無限等比級数の和
\[
\sum_{k=1}^{n}\left(a_{1}r^{k-1}\right)=a_{1}\frac{1-r^{n}}{1-r}
\]
軌跡・領域での順像法と逆像法
区分的に連続と区分的に滑らかの定義
畳み込みの性質
\[
\mathcal{F}\left(\left(f*g\right)\left(x\right)\right)=\mathcal{F}\left(\left(f\right)\left(x\right)\right)\mathcal{F}\left(\left(g\right)\left(x\right)\right)
\]

