e^(ikx)の和
\(n\in\mathbb{N}_{0}\)とする。
\[ \sum_{k=-n}^{n}e^{ikx}=\frac{\sin\left\{ \left(n+\frac{1}{2}\right)x\right\} }{\sin\frac{x}{2}} \]
\[ \sum_{k=-n}^{n}e^{ikx}=\frac{\sin\left\{ \left(n+\frac{1}{2}\right)x\right\} }{\sin\frac{x}{2}} \]
\begin{align*}
\sum_{k=-n}^{n}e^{ikx} & =\sum_{k=0}^{2n}e^{i(k-n)x}\\
& =e^{-inx}\sum_{k=0}^{2n}e^{ikx}\\
& =e^{-inx}\frac{1-e^{i(2n+1)x}}{1-e^{ix}}\\
& =\frac{e^{-inx}-e^{i(n+1)x}}{1-e^{ix}}\\
& =\frac{e^{-i\left(n+\frac{1}{2}\right)x}-e^{i\left(n+\frac{1}{2}\right)x}}{e^{-i\frac{x}{2}}-e^{i\frac{x}{2}}}\\
& =\frac{\sin\left\{ \left(n+\frac{1}{2}\right)x\right\} }{\sin\frac{x}{2}}
\end{align*}
ページ情報
タイトル | e^(ikx)の和 |
URL | https://www.nomuramath.com/ohqhumvt/ |
SNSボタン |
[word]数式オートコレクトのバックアップ・移行方法
偶関数の分母に指数関数+1がある対称な定積分
\[
\int_{-c}^{c}\frac{f_{e}\left(x\right)}{1+a^{x}}dx=\int_{0}^{c}f_{e}\left(x\right)dx
\]
3角関数3つでの積和公式・和積公式
\[
\sin A+\sin B+\sin C=4\sin\frac{B+C}{2}\sin\frac{C+A}{2}\sin\frac{A+B}{2}+\sin\left(A+B+C\right)
\]
2項係数の対称性を使います
\[
\sum_{k=0}^{n}kC^{2}\left(n,k\right)=?
\]