置換行列の性質
置換行列の性質
\(\sigma,\tau\)を\(n\)次の置換として、置換\(\sigma,\tau\)が行ベクトルに作用する置換行列をそれぞれ\(P_{\sigma},P_{\tau}\)として、置換\(\sigma,\tau\)が列ベクトルに作用する置換行列をそれぞれ\(Q_{\sigma},Q_{\tau}\)とする。
\(\sigma,\tau\)を\(n\)次の置換として、置換\(\sigma,\tau\)が行ベクトルに作用する置換行列をそれぞれ\(P_{\sigma},P_{\tau}\)として、置換\(\sigma,\tau\)が列ベクトルに作用する置換行列をそれぞれ\(Q_{\sigma},Q_{\tau}\)とする。
(1)
\[ Q_{\sigma}=P_{\sigma}^{T} \](2)置換行列の作用
\[ P_{\sigma}\left(\begin{array}{c} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{array}\right)=\left(\begin{array}{c} x_{\sigma\left(1\right)}\\ x_{\sigma\left(2\right)}\\ \vdots\\ x_{\sigma\left(n\right)} \end{array}\right) \] \[ P_{\sigma}^{T}\left(\begin{array}{c} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{array}\right)=\left(\begin{array}{c} x_{\sigma^{\bullet}\left(1\right)}\\ x_{\sigma^{\bullet}\left(2\right)}\\ \vdots\\ x_{\sigma^{\bullet}\left(n\right)} \end{array}\right) \] \[ \left(\begin{array}{cccc} x_{1} & x_{2} & \cdots & x_{n}\end{array}\right)P_{\sigma}=\left(\begin{array}{cccc} x_{\sigma^{\bullet}\left(1\right)} & x_{\sigma^{\bullet}\left(2\right)} & \cdots & x_{\sigma^{\bullet}\left(n\right)}\end{array}\right) \] \[ \left(\begin{array}{cccc} x_{1} & x_{2} & \cdots & x_{n}\end{array}\right)P_{\sigma}^{T}=\left(\begin{array}{cccc} x_{\sigma\left(1\right)} & x_{\sigma\left(2\right)} & \cdots & x_{\sigma\left(n\right)}\end{array}\right) \] \[ Q_{\sigma}\left(\begin{array}{c} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{array}\right)=\left(\begin{array}{c} x_{\sigma^{\bullet}\left(1\right)}\\ x_{\sigma^{\bullet}\left(2\right)}\\ \vdots\\ x_{\sigma^{\bullet}\left(n\right)} \end{array}\right) \] \[ Q_{\sigma}^{T}\left(\begin{array}{c} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{array}\right)=\left(\begin{array}{c} x_{\sigma\left(1\right)}\\ x_{\sigma\left(2\right)}\\ \vdots\\ x_{\sigma\left(n\right)} \end{array}\right) \] \[ \left(\begin{array}{cccc} x_{1} & x_{2} & \cdots & x_{n}\end{array}\right)Q_{\sigma}=\left(\begin{array}{cccc} x_{\sigma\left(1\right)} & x_{\sigma\left(2\right)} & \cdots & x_{\sigma\left(n\right)}\end{array}\right) \] \[ \left(\begin{array}{cccc} x_{1} & x_{2} & \cdots & x_{n}\end{array}\right)Q_{\sigma}^{T}=\left(\begin{array}{cccc} x_{\sigma^{\bullet}\left(1\right)} & x_{\sigma^{\bullet}\left(2\right)} & \cdots & x_{\sigma^{\bullet}\left(n\right)}\end{array}\right) \](3)合成
\[ P_{\tau}P_{\sigma}=P_{\tau\circ\sigma} \] \[ Q_{\tau}Q_{\sigma}=Q_{\sigma\circ\tau} \](4)逆置換と転置・逆行列
\begin{align*} P_{\sigma^{\bullet}} & =P_{\sigma}^{T}\\ & =P_{\sigma}^{-1} \end{align*} \begin{align*} Q_{\sigma^{\bullet}} & =Q_{\sigma}^{T}\\ & =Q_{\sigma}^{-1} \end{align*}(5)行列式
\[ \det\left(P_{\sigma}\right)=\sgn\left(\sigma\right) \] \[ \det\left(Q_{\sigma}\right)=\sgn\left(\sigma\right) \](1)
\begin{align*} \left(Q_{\sigma}\right)_{i,j} & =\left(\delta_{i,\sigma\left(j\right)}\right)_{i,j}\\ & =\left(\delta_{j,\sigma\left(i\right)}\right)_{j,i}\\ & =\left(\left(P_{\sigma}\right)_{j,i}\right)_{i,j}\\ & =\left(P_{\sigma}^{T}\right)_{i,j} \end{align*}(1)-2
\begin{align*} Q_{\sigma} & =\left(\begin{array}{cccc} \delta_{1,\sigma\left(1\right)} & \delta_{1,\sigma\left(2\right)} & \cdots & \delta_{1,\sigma\left(n\right)}\\ \delta_{2,\sigma\left(1\right)} & \delta_{2,\sigma\left(2\right)} & \cdots & \delta_{2,\sigma\left(n\right)}\\ \vdots & \vdots & \ddots & \vdots\\ \delta_{n,\sigma\left(1\right)} & \delta_{n,\sigma\left(2\right)} & \cdots & \delta_{n,\sigma\left(n\right)} \end{array}\right)\\ & =\left(\begin{array}{cccc} \delta_{1,\sigma\left(1\right)} & \delta_{2,\sigma\left(1\right)} & \cdots & \delta_{n,\sigma\left(1\right)}\\ \delta_{1,\sigma\left(2\right)} & \delta_{2,\sigma\left(2\right)} & \cdots & \delta_{n,\sigma\left(2\right)}\\ \vdots & \vdots & \ddots & \vdots\\ \delta_{1,\sigma\left(n\right)} & \delta_{2,\sigma\left(n\right)} & \cdots & \delta_{n,\sigma\left(n\right)} \end{array}\right)^{T}\\ & =P_{\sigma}^{T} \end{align*}(2)
\begin{align*} P_{\sigma}\left(\begin{array}{c} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{array}\right) & =\sum_{j=1}^{n}\left(\delta_{j,\sigma\left(i\right)}\right)_{i,j}x_{j}\\ & =\left(\sum_{j=1}^{n}\delta_{j,\sigma\left(i\right)}x_{j}\right)_{i,1}\\ & =\left(x_{\sigma\left(i\right)}\right)_{i,1}\\ & =\left(\begin{array}{c} x_{\sigma\left(1\right)}\\ x_{\sigma\left(2\right)}\\ \vdots\\ x_{\sigma\left(n\right)} \end{array}\right) \end{align*} \begin{align*} P_{\sigma}^{T}\left(\begin{array}{c} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{array}\right) & =\sum_{j=1}^{n}\left(\delta_{i,\sigma\left(j\right)}\right)_{i,j}x_{j}\\ & =\sum_{j=1}^{n}\left(\delta_{\sigma^{\bullet}\left(i\right),j}\right)_{i,j}x_{j}\\ & =\left(\sum_{j=1}^{n}\delta_{\sigma^{\bullet}\left(i\right),j}x_{j}\right)_{i,1}\\ & =\left(x_{\sigma^{\bullet}\left(i\right)}\right)_{i,1}\\ & =\left(\begin{array}{c} x_{\sigma^{\bullet}\left(1\right)}\\ x_{\sigma^{\bullet}\left(2\right)}\\ \vdots\\ x_{\sigma^{\bullet}\left(n\right)} \end{array}\right) \end{align*} \begin{align*} \left(\begin{array}{cccc} x_{1} & x_{2} & \cdots & x_{n}\end{array}\right)P_{\sigma} & =\left(P_{\sigma}^{T}\left(\begin{array}{c} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{array}\right)\right)^{T}\\ & =\left(\begin{array}{c} x_{\sigma^{\bullet}\left(1\right)}\\ x_{\sigma^{\bullet}\left(2\right)}\\ \vdots\\ x_{\sigma^{\bullet}\left(n\right)} \end{array}\right)^{T}\\ & =\left(\begin{array}{cccc} x_{\sigma^{\bullet}\left(1\right)} & x_{\sigma^{\bullet}\left(2\right)} & \cdots & x_{\sigma^{\bullet}\left(n\right)}\end{array}\right) \end{align*} \begin{align*} \left(\begin{array}{cccc} x_{1} & x_{2} & \cdots & x_{n}\end{array}\right)P_{\sigma}^{T} & =\left(P_{\sigma}\left(\begin{array}{c} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{array}\right)\right)^{T}\\ & =\left(\begin{array}{c} x_{\sigma\left(1\right)}\\ x_{\sigma\left(2\right)}\\ \vdots\\ x_{\sigma\left(n\right)} \end{array}\right)^{T}\\ & =\left(\begin{array}{cccc} x_{\sigma\left(1\right)} & x_{\sigma\left(2\right)} & \cdots & x_{\sigma\left(n\right)}\end{array}\right) \end{align*} \(Q_{\sigma}\)についての証明も同様。(2)-2
\begin{align*} P_{\sigma}\left(\begin{array}{c} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{array}\right) & =\left(\begin{array}{cccc} \delta_{1,\sigma\left(1\right)} & \delta_{2,\sigma\left(1\right)} & \cdots & \delta_{n,\sigma\left(1\right)}\\ \delta_{1,\sigma\left(2\right)} & \delta_{2,\sigma\left(2\right)} & \cdots & \delta_{n,\sigma\left(2\right)}\\ \vdots & \vdots & \ddots & \vdots\\ \delta_{1,\sigma\left(n\right)} & \delta_{2,\sigma\left(n\right)} & \cdots & \delta_{n,\sigma\left(n\right)} \end{array}\right)\left(\begin{array}{c} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{array}\right)\\ & =\sum_{k=1}^{n}\left(\begin{array}{c} \delta_{k,\sigma\left(1\right)}x_{k}\\ \delta_{k,\sigma\left(2\right)}x_{k}\\ \vdots\\ \delta_{k,\sigma\left(n\right)}x_{k} \end{array}\right)\\ & =\left(\begin{array}{c} x_{\sigma\left(1\right)}\\ x_{\sigma\left(2\right)}\\ \vdots\\ x_{\sigma\left(n\right)} \end{array}\right) \end{align*} \begin{align*} P_{\sigma}^{T}\left(\begin{array}{c} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{array}\right) & =\left(\begin{array}{cccc} \delta_{1,\sigma\left(1\right)} & \delta_{2,\sigma\left(1\right)} & \cdots & \delta_{n,\sigma\left(1\right)}\\ \delta_{1,\sigma\left(2\right)} & \delta_{2,\sigma\left(2\right)} & \cdots & \delta_{n,\sigma\left(2\right)}\\ \vdots & \vdots & \ddots & \vdots\\ \delta_{1,\sigma\left(n\right)} & \delta_{2,\sigma\left(n\right)} & \cdots & \delta_{n,\sigma\left(n\right)} \end{array}\right)^{T}\left(\begin{array}{c} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{array}\right)\\ & =\left(\begin{array}{cccc} \delta_{1,\sigma\left(1\right)} & \delta_{1,\sigma\left(2\right)} & \cdots & \delta_{1,\sigma\left(n\right)}\\ \delta_{2,\sigma\left(1\right)} & \delta_{2,\sigma\left(2\right)} & \cdots & \delta_{2,\sigma\left(n\right)}\\ \vdots & \vdots & \ddots & \vdots\\ \delta_{n,\sigma\left(1\right)} & \delta_{n,\sigma\left(2\right)} & \cdots & \delta_{n,\sigma\left(n\right)} \end{array}\right)\left(\begin{array}{c} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{array}\right)\\ & =\sum_{k=1}^{n}\left(\begin{array}{c} \delta_{1,\sigma\left(k\right)}x_{k}\\ \delta_{2,\sigma\left(k\right)}x_{k}\\ \vdots\\ \delta_{n,\sigma\left(k\right)}x_{k} \end{array}\right)\\ & =\left(\begin{array}{c} x_{\sigma^{\bullet}\left(1\right)}\\ x_{\sigma^{\bullet}\left(2\right)}\\ \vdots\\ x_{\sigma^{\bullet}\left(n\right)} \end{array}\right) \end{align*}(3)
任意の列ベクトル\(\left(x_{1},x_{2},\cdots,x_{n}\right)^{T}\)に対し、\begin{align*} P_{\tau}P_{\sigma}\left(\begin{array}{c} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{array}\right) & =P_{\tau}\left(\begin{array}{c} x_{\sigma\left(1\right)}\\ x_{\sigma\left(2\right)}\\ \vdots\\ x_{\sigma\left(n\right)} \end{array}\right)\\ & =\left(\begin{array}{c} x_{\tau\left(\sigma\left(1\right)\right)}\\ x_{\tau\left(\sigma\left(2\right)\right)}\\ \vdots\\ x_{\tau\left(\sigma\left(n\right)\right)} \end{array}\right)\\ & =\left(\begin{array}{c} x_{\tau\circ\sigma\left(1\right)}\\ x_{\tau\circ\sigma\left(2\right)}\\ \vdots\\ x_{\tau\circ\sigma\left(n\right)} \end{array}\right)\\ & =P_{\tau\circ\sigma}\left(\begin{array}{c} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{array}\right) \end{align*} となるので、\(P_{\tau}P_{\sigma}=P_{\tau\circ\sigma}\)が成り立つ。
これを使って、
\begin{align*} Q_{\tau}Q_{\sigma} & =P_{\tau}^{T}P_{\sigma}^{T}\\ & =\left(P_{\sigma}P_{\tau}\right)^{T}\\ & =P_{\sigma\circ\tau}^{T}\\ & =Q_{\sigma\circ\tau} \end{align*} となるので、\(Q_{\tau}Q_{\sigma}=Q_{\sigma\circ\tau}\)が成り立つ。
(4)
\begin{align*} P_{\sigma}^{T}\left(\begin{array}{c} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{array}\right) & =\left(\begin{array}{c} x_{\sigma^{\bullet}\left(1\right)}\\ x_{\sigma^{\bullet}\left(2\right)}\\ \vdots\\ x_{\sigma^{\bullet}\left(n\right)} \end{array}\right)\\ & =P_{\sigma^{\bullet}}\left(\begin{array}{c} x_{\sigma^{\bullet}\left(1\right)}\\ x_{\sigma^{\bullet}\left(2\right)}\\ \vdots\\ x_{\sigma^{\bullet}\left(n\right)} \end{array}\right) \end{align*} \begin{align*} P_{\sigma^{\bullet}}P_{\sigma} & =P_{\sigma^{\bullet}\circ\sigma}\\ & =I \end{align*} \begin{align*} P_{\sigma} & P_{\sigma^{\bullet}}=P_{\sigma\circ\sigma^{\bullet}}\\ & =I \end{align*} となるので、\[ P_{\sigma^{\bullet}}=P_{\sigma}^{-1} \] となる。
同様に
\begin{align*} Q_{\sigma^{\bullet}} & =Q_{\sigma}^{T}\\ & =Q_{\sigma}^{-1} \end{align*} が成り立つ。
(5)
\begin{align*} \det\left(P_{\sigma}\right) & =\det\left(\begin{array}{cccc} \delta_{1,\sigma\left(1\right)} & \delta_{2,\sigma\left(1\right)} & \cdots & \delta_{n,\sigma\left(1\right)}\\ \delta_{1,\sigma\left(2\right)} & \delta_{2,\sigma\left(2\right)} & \cdots & \delta_{n,\sigma\left(2\right)}\\ \vdots & \vdots & \ddots & \vdots\\ \delta_{1,\sigma\left(n\right)} & \delta_{2,\sigma\left(n\right)} & \cdots & \delta_{n,\sigma\left(n\right)} \end{array}\right)\\ & =\sum_{\tau\in S_{n}}\sgn\left(\tau\right)\left(P_{\sigma}\right)_{1,\tau\left(1\right)}\left(P_{\sigma}\right)_{2,\tau\left(2\right)}\cdots\left(P_{\sigma}\right)_{n,\tau\left(n\right)}\\ & =\sum_{\sigma\in S_{n}}\sgn\left(\sigma\right)\delta_{\tau\left(1\right),\sigma\left(1\right)}\delta_{\tau\left(2\right),\sigma\left(2\right)}\cdots\delta_{\tau\left(n\right),\sigma\left(n\right)}\\ & =\sgn\left(\sigma\right) \end{align*} これを使って、\begin{align*} \det\left(Q_{\sigma}\right) & =\det\left(P_{\sigma}^{T}\right)\\ & =\det\left(P_{\sigma}\right)\cmt{\because\det\left(A^{T}\right)=\det\left(A\right)}\\ & =\sgn\left(\sigma\right) \end{align*} となる。
ページ情報
| タイトル | 置換行列の性質 |
| URL | https://www.nomuramath.com/nmrrqqdp/ |
| SNSボタン |
行列の指数関数の定義
\[
\exp\left(A\right)=\sum_{k-0}^{\infty}\frac{A^{k}}{k!}
\]
色々な行列の定義
\[
M_{n}\left(K\right)
\]
クロネッカー積の性質
\[
\left(A\otimes B\right)\left(C\otimes D\right)=\left(AC\right)\otimes\left(BD\right)
\]
行列の和とスカラー倍と積・クロネッカー積・アダマール積・vec作用素の定義
\[
\left(AB\right)_{i,j}=\sum_{k=1}^{m}\left(A\right)_{i,k}\left(B\right)_{k,j}
\]

