冪関数と指数関数の積の積分
冪関数と指数関数の積の積分
(1)
\[ \int z^{\alpha}e^{\beta z}dz=\frac{z^{\alpha}}{\beta\left(-\beta z\right)^{\alpha}}\Gamma\left(\alpha+1,-\beta z\right)+C \](2)
\[ \int z^{\alpha}\beta^{z}dz=\frac{z^{\alpha}}{\Log\beta\left(-z\Log\beta\right)^{\alpha}}\Gamma\left(\alpha+1,-z\Log\beta\right)+C \]-
\(\Gamma\left(x,y\right)\)は第2種不完全ガンマ関数(1)
\begin{align*} \int z^{\alpha}e^{\beta z}dz & =\frac{\left(-\beta\right)^{\alpha}z^{\alpha}}{\left(-\beta z\right)^{\alpha}}\int\frac{\left(-\beta z\right)^{\alpha}}{\left(-\beta\right)^{\alpha+1}}e^{\beta z}d\left(-\beta z\right)\\ & =\frac{z^{\alpha}}{\left(-\beta\right)\left(-\beta z\right)^{\alpha}}\int^{-\beta z}z^{\alpha}e^{-z}dz\\ & =\frac{z^{\alpha}}{\beta\left(-\beta z\right)^{\alpha}}\Gamma\left(\alpha+1,-\beta z\right)+C \end{align*}(2)
\begin{align*} \int z^{\alpha}\beta^{z}dz & =\int z^{\alpha}e^{z\Log\beta}dz\\ & =\left[\int z^{\alpha}e^{\beta z}dz\right]_{\beta\rightarrow\Log\beta}\\ & =\left[\frac{z^{\alpha}}{\beta\left(-\beta z\right)^{\alpha}}\Gamma\left(\alpha+1,-\beta z\right)+C\right]_{\beta\rightarrow\Log\beta}\\ & =\frac{z^{\alpha}}{\Log\beta\left(-z\Log\beta\right)^{\alpha}}\Gamma\left(\alpha+1,-z\Log\beta\right)+C \end{align*}ページ情報
| タイトル | 冪関数と指数関数の積の積分 |
| URL | https://www.nomuramath.com/nmp735fv/ |
| SNSボタン |
反復積分に関するコーシーの公式
\[
\int_{a}^{x}\int_{a}^{y_{1}}\cdots\int_{a}^{y_{n-1}}f\left(y_{n}\right)dy_{n}\cdots dy_{1}=\frac{1}{\left(n-1\right)!}\int_{a}^{x}\left(x-t\right)^{n-1}f\left(t\right)dt
\]
部分積分と繰り返し部分積分
\[
\int f(x)g(x)dx=\sum_{k=0}^{n-1}\left(-1\right)^{k}f^{(-(k+1))}(x)g^{(k)}(x)+(-1)^{n}\int f^{(-n)}(x)g^{(n)}(x)dx
\]
ライプニッツの法則
\[
\left(fg\right)^{(n)}=\sum_{k=0}^{n}C(n,k)f^{(k)}g^{(n-k)}
\]
基本関数の微分
\[
\left(a^{x}\right)'=a^{x}\log a
\]

