正接関数・双曲線正接関数の半角公式の別表示
正接関数・双曲線正接関数の半角公式の別表示
(1)
\[ \tan\frac{z}{2}=\frac{\sin z}{1+\cos z} \](2)
\[ \tanh\frac{z}{2}=\frac{\sinh\left(z\right)}{1+\cosh\left(z\right)} \](1)
\begin{align*} \tan\frac{z}{2} & =\frac{2\tan\frac{z}{2}}{1+\tan^{2}\frac{z}{2}+1-\tan^{2}\frac{z}{2}}\\ & =\frac{\frac{2\tan\frac{z}{2}}{1+\tan^{2}\frac{z}{2}}}{1+\frac{1-\tan^{2}\frac{z}{2}}{1+\tan^{2}\frac{z}{2}}}\\ & =\frac{\sin z}{1+\cos z} \end{align*}(2)
\begin{align*} \tanh\frac{z}{2} & =-i\tan\frac{iz}{2}\\ & =-i\frac{\sin\left(iz\right)}{1+\cos\left(iz\right)}\\ & =\frac{\sinh\left(z\right)}{1+\cosh\left(z\right)} \end{align*}ページ情報
| タイトル | 正接関数・双曲線正接関数の半角公式の別表示 |
| URL | https://www.nomuramath.com/nmhzqc7h/ |
| SNSボタン |
逆三角関数の三角関数と逆双曲線関数の双曲線関数
\[
\sin\Cos^{\bullet}z=\sqrt{1-z^{2}}
\]
3角関数・双曲線関数の総和
\[
\sum_{k=m_{1}}^{m_{2}}\sin\left(ak+b\right)=\sin^{-1}\left(\frac{a}{2}\right)\sin\left(\left(m_{1}+m_{2}\right)\frac{a}{2}+b\right)\sin\left(\left(1+m_{2}-m_{1}\right)\frac{a}{2}\right)
\]
三角関数と双曲線関数
\[
i\sin x=\sinh\left(ix\right)
\]
正弦と余弦のべき乗の積の積分の超幾何関数表示
\[
\int\sin^{\alpha}\left(x\right)\cos^{\beta}\left(x\right)dx=\frac{\cos^{\beta-1}}{\left(\cos^{2}\left(x\right)\right)^{\frac{\beta-1}{2}}}\frac{\sin^{\alpha+1}\left(x\right)}{\alpha+1}F\left(\frac{1-\beta}{2},\frac{\alpha+1}{2};\frac{\alpha+3}{2};\sin^{2}\left(x\right)\right)+C
\]

