剰余演算の引数
剰余演算の引数
\(\beta\ne0\)とする。
\[ \mod\left(\alpha,\beta,\gamma\right):=\mod\left(\alpha-\gamma,\beta\right)+\gamma \]
\(\beta\ne0\)とする。
\[ \mod\left(\alpha,\beta,\gamma\right):=\mod\left(\alpha-\gamma,\beta\right)+\gamma \]
ページ情報
タイトル | 剰余演算の引数 |
URL | https://www.nomuramath.com/lr647j1a/ |
SNSボタン |
剰余演算の定数倍
\[
\frac{1}{\delta}\mod\left(\alpha,\beta,\gamma\right)=\mod\left(\frac{\alpha}{\delta},\frac{\beta}{\delta},\frac{\gamma}{\delta}\right)
\]
剰余演算の実部と虚部
\[
\mod\left(\alpha,\beta\right)=\Re\left(\beta\right)\mod\left(\Re\left(\frac{\alpha}{\beta}\right),1\right)-\Im\left(\beta\right)\mod\left(\Im\left(\frac{\alpha}{\beta}\right),1\right)+i\left\{ \Re\left(\beta\right)\mod\left(\Im\left(\frac{\alpha}{\beta}\right),1\right)+\Im\left(\beta\right)\mod\left(\Re\left(\frac{\alpha}{\beta}\right),1\right)\right\}
\]
剰余の剰余
\[
\mod\left(\mod\left(\alpha,n\beta\right),\beta\right)=\mod\left(\alpha,\beta\right)
\]
複素数と複素共役の実数での剰余演算
\[
\mod\left(\alpha,1\right)=\mod\left(\Re\alpha,1\right)+i\mod\left(\Im\alpha,1\right)
\]