ベータ関数・不完全ベータ関数の超幾何関数表示
ベータ関数・不完全ベータ関数の超幾何関数表示
ベータ関数\(B\left(\alpha,\beta\right)\)・不完全ベータ関数\(B\left(z;\alpha,\beta\right)\)を超幾何関数\(F\left(\alpha,\beta;\gamma,z\right)\)で表すと次のようになる。
ベータ関数\(B\left(\alpha,\beta\right)\)・不完全ベータ関数\(B\left(z;\alpha,\beta\right)\)を超幾何関数\(F\left(\alpha,\beta;\gamma,z\right)\)で表すと次のようになる。
(1)ベータ関数
\[ B\left(\alpha,\beta\right)=\frac{1}{\alpha}F\left(\alpha,1-\beta;\alpha+1;1\right) \](2)不完全ベータ関数
\[ B\left(z;\alpha,\beta\right)=\frac{z^{\alpha}}{\alpha}F\left(\alpha,1-\beta;\alpha+1;z\right) \](1)
(2)より、\begin{align*} B\left(\alpha,\beta\right) & =\left[B\left(z;\alpha,\beta\right)\right]_{z=1}\\ & =\left[\frac{z^{\alpha}}{\alpha}F\left(\alpha,1-\beta;\alpha+1;z\right)\right]_{z=1}\\ & =\frac{1}{\alpha}F\left(\alpha,1-\beta;\alpha+1;1\right) \end{align*}
(2)
\begin{align*} B\left(z;\alpha,\beta\right) & =\int_{0}^{z}t^{\alpha-1}\left(1-t\right)^{\beta-1}dt\\ & =\int_{0}^{z}t^{\alpha-1}\sum_{k=0}^{\infty}C\left(\beta-1,k\right)\left(-t\right)^{k}dt\\ & =\sum_{k=0}^{\infty}C\left(\beta-1,k\right)\left(-1\right)^{k}\int_{0}^{z}t^{\alpha-1+k}dt\\ & =\sum_{k=0}^{\infty}C\left(\beta-1,k\right)\left(-1\right)^{k}\left[\frac{t^{\alpha+k}}{\alpha+k}\right]_{0}^{z}\\ & =\sum_{k=0}^{\infty}C\left(\beta-1,k\right)\left(-1\right)^{k}\frac{z^{a+k}}{\alpha+k}\\ & =z^{\alpha}\sum_{k=0}^{\infty}\frac{P\left(\beta-1,k\right)}{k!}\cdot\frac{\left(-z\right)^{k}}{\alpha+k}\\ & =z^{\alpha}\sum_{k=0}^{\infty}\frac{P\left(\beta-1,k\right)}{k!}\cdot\frac{\left(k+\alpha-1\right)!\left(-z\right)^{k}}{\left(k+\alpha\right)!}\\ & =z^{\alpha}\sum_{k=0}^{\infty}\frac{P\left(\beta-1,k\right)}{k!}\cdot\frac{\left(\alpha-1\right)!Q\left(\alpha,k\right)\left(-z\right)^{k}}{\alpha!Q\left(\alpha+1,k\right)}\\ & =\frac{z^{\alpha}}{\alpha}\sum_{k=0}^{\infty}\frac{\left(-1\right)^{k}Q\left(1-\beta,k\right)}{k!}\cdot\frac{Q\left(\alpha,k\right)\left(-z\right)^{k}}{Q\left(\alpha+1,k\right)}\\ & =\frac{z^{\alpha}}{\alpha}\sum_{k=0}^{\infty}\frac{Q\left(\alpha,k\right)Q\left(1-\beta,k\right)}{Q\left(\alpha+1,k\right)}\cdot\frac{z^{k}}{k!}\\ & =\frac{z^{\alpha}}{\alpha}F\left(\alpha,1-\beta;\alpha+1;z\right) \end{align*}ページ情報
タイトル | ベータ関数・不完全ベータ関数の超幾何関数表示 |
URL | https://www.nomuramath.com/l8w5bfj5/ |
SNSボタン |
ベータ関数の対称性
\[
B\left(\alpha,\beta\right)=B\left(\beta,\alpha\right)
\]
2項係数とベータ関数の関係
\[
B(x,y)=\frac{C(y-1,-x)\pi}{\sin(\pi x)}
\]
ベータ関数の特殊値
\[
B\left(\alpha,1\right)=\frac{1}{\alpha}
\]
不完全ベータ関数の漸化式
\[
B\left(z;\alpha+1,\beta\right)=\frac{1}{\alpha+\beta}\left(\alpha B\left(z;\alpha,\beta\right)-z^{\alpha}\left(1-z\right)^{\beta}\right)
\]