対数関数のn回積分
対数関数のn回積分
\[
\left(\log x\right)^{(-n)}=\left(\log x-H_{n}\right)\frac{x^{n}}{n!}
\]
\(n=0\)のとき
明らかに成立。
\(n=k\)のとき成立すると仮定する
\begin{align*} \left(\log x\right)^{(-(k+1))} & =\int\left(\log x-H_{k}\right)\frac{x^{k}}{k!}dx\\ & =\left(\log x-H_{k}\right)\frac{x^{k+1}}{(k+1)!}-\int\frac{1}{x}\frac{x^{k+1}}{(k+1)!}dx\\ & =\left(\log x-H_{k}\right)\frac{x^{k+1}}{(k+1)!}-\frac{x^{k+1}}{(k+1)(k+1)!}\\ & =\left(\log x-H_{k}-\frac{1}{k+1}\right)\frac{x^{k+1}}{(k+1)!}\\ & =\left(\log x-H_{k+1}\right)\frac{x^{k+1}}{(k+1)!} \end{align*}
となるので\(n=k+1\)でも成立
(*)
故に与式は成り立つ。
ページ情報
タイトル | 対数関数のn回積分 |
URL | https://www.nomuramath.com/kgwgsfey/ |
SNSボタン |
2項係数の総和
\[
\sum_{k=0}^{n}P(k,m)C(n,k)=P(n,m)2^{n-m}
\]
チェビシェフ多項式の直交性
\[
\int_{-1}^{1}T_{m}(x)T_{n}(x)\frac{dx}{\sqrt{1-x^{2}}}=\frac{\pi}{2}\left(\delta_{mn}+\delta_{0m}\delta_{0n}\right)
\]
複素数の冪関数の定義
\[
\alpha^{\beta}=e^{\beta\log\alpha}
\]
ユークリッドの互除法
\[
\gcd(a,b)=\gcd(b,r)
\]