対数関数のn回積分
対数関数のn回積分
\[ \left(\log x\right)^{(-n)}=\left(\log x-H_{n}\right)\frac{x^{n}}{n!} \]
\[ \left(\log x\right)^{(-n)}=\left(\log x-H_{n}\right)\frac{x^{n}}{n!} \]
\(n=0\)のとき
明らかに成立。\(n=k\)のとき成立すると仮定する
\begin{align*} \left(\log x\right)^{(-(k+1))} & =\int\left(\log x-H_{k}\right)\frac{x^{k}}{k!}dx\\ & =\left(\log x-H_{k}\right)\frac{x^{k+1}}{(k+1)!}-\int\frac{1}{x}\frac{x^{k+1}}{(k+1)!}dx\\ & =\left(\log x-H_{k}\right)\frac{x^{k+1}}{(k+1)!}-\frac{x^{k+1}}{(k+1)(k+1)!}\\ & =\left(\log x-H_{k}-\frac{1}{k+1}\right)\frac{x^{k+1}}{(k+1)!}\\ & =\left(\log x-H_{k+1}\right)\frac{x^{k+1}}{(k+1)!} \end{align*} となるので\(n=k+1\)でも成立(*)
故に与式は成り立つ。ページ情報
タイトル | 対数関数のn回積分 |
URL | https://www.nomuramath.com/kgwgsfey/ |
SNSボタン |
3角形の面積を外接円・内接円の半径を使って表示
\begin{align*}
S & =\frac{abc}{4R}\\
& =\frac{1}{2}r\left(a+b+c\right)\\
& =2R^{2}\sin A\sin B\sin C\\
& =rR\left(\sin A+\sin B+\sin C\right)
\end{align*}
[word]数式オートコレクトのバックアップ・移行方法
関数の偶奇分解
\[
f\left(x\right)=f_{e}\left(x\right)+f_{o}\left(x\right)
\]
ヘヴィサイドの階段関数の2定義値を引数に持つ関数の和と差
\[
f\left(H\left(\pm_{1}1\right)\right)\pm_{2}f\left(-H\left(\mp_{1}1\right)\right)=\left(f\left(0\right)+f\left(\pm_{1}1\right)\right)H\left(\pm_{2}1\right)\mp_{1}\left(f\left(0\right)-f\left(\pm_{1}1\right)\right)H\left(\mp_{2}1\right)
\]