集合族の和集合と積集合の定義
集合族の和集合と積集合の定義
集合族\(\mathcal{A}=\left\{ A_{\lambda}\right\} _{\lambda\in\Lambda}\)が与えられているとする。
このとき、集合族の和集合と積集合を以下で定義する。
集合族\(\mathcal{A}=\left\{ A_{\lambda}\right\} _{\lambda\in\Lambda}\)が与えられているとする。
このとき、集合族の和集合と積集合を以下で定義する。
(1)集合族の和集合
\[ \bigcup\mathcal{A}=\bigcup_{\lambda\in\Lambda}A_{\lambda}=\left\{ x;\exists\lambda\in\Lambda,x\in A_{\lambda}\right\} \](2)集合族の積集合
\[ \bigcap\mathcal{A}=\bigcap_{\lambda\in\Lambda}A_{\lambda}=\left\{ x;\forall\lambda\in\Lambda,x\in A_{\lambda}\right\} \]\(\mathcal{A}=\left\{ \left\{ a,b\right\} ,\left\{ a,c\right\} ,\left\{ a,d\right\} ,\left\{ a,b,c\right\} \right\} \)とすると、
\[ \bigcup\mathcal{A}=\left\{ a,b\right\} \cup\left\{ a,c\right\} \cup\left\{ a,d\right\} \cup\left\{ a,b,c\right\} =\left\{ a,b,c,d\right\} \] \[ \bigcap\mathcal{A}=\left\{ a,b\right\} \cap\left\{ a,c\right\} \cap\left\{ a,d\right\} \cap\left\{ a,b,c\right\} =\left\{ a\right\} \] となる。
\[ \bigcup\mathcal{A}=\left\{ a,b\right\} \cup\left\{ a,c\right\} \cup\left\{ a,d\right\} \cup\left\{ a,b,c\right\} =\left\{ a,b,c,d\right\} \] \[ \bigcap\mathcal{A}=\left\{ a,b\right\} \cap\left\{ a,c\right\} \cap\left\{ a,d\right\} \cap\left\{ a,b,c\right\} =\left\{ a\right\} \] となる。
ページ情報
タイトル | 集合族の和集合と積集合の定義 |
URL | https://www.nomuramath.com/jz5cse2b/ |
SNSボタン |
相反方程式の定義と解法
\[
\sum_{k=0}^{n}a_{k}x^{k}=0
\]
階乗冪(下降階乗・上昇階乗)の微分
\[
\frac{d}{dx}P(x,y) =P(x,y)\left\{ \psi(1+x)-\psi(1+x-y)\right\}
\]
無限補有限位相の分離公理(T0・T1・T2・T3・T4・正則空間・正規空間)
完全剰余系の基本定理
\[
1a,2a,3a,\cdots\cdots,na
\]