床関数の総和の2乗の定積分
床関数の総和の2乗の定積分
次の定積分を求めよ。
\[ \int_{0}^{1}\left(\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}x\right\rfloor }{3^{k}}\right)^{2}dx=? \]
次の定積分を求めよ。
\[ \int_{0}^{1}\left(\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}x\right\rfloor }{3^{k}}\right)^{2}dx=? \]
-
\(\left\lfloor x\right\rfloor \)は床関数で\(x\)を超えない最大の整数を表す。\begin{align*}
\int_{0}^{1}\left(\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}x\right\rfloor }{3^{k}}\right)^{2}dx & =\int_{0}^{1}\left(\sum_{k=2}^{\infty}\frac{\left\lfloor 2^{k-1}x\right\rfloor }{3^{k-1}}\right)^{2}dx\\
& =9\int_{0}^{1}\left(\sum_{k=2}^{\infty}\frac{\left\lfloor 2^{k-1}x\right\rfloor }{3^{k}}\right)^{2}dx\\
& =18\int_{0}^{\frac{1}{2}}\left(\sum_{k=2}^{\infty}\frac{\left\lfloor 2^{k}\frac{x}{2}\right\rfloor }{3^{k}}\right)^{2}d\frac{x}{2}\\
& =18\int_{0}^{\frac{1}{2}}\left(\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}\frac{x}{2}\right\rfloor }{3^{k}}\right)^{2}d\frac{x}{2}\tag{(*)}\\
& =18\int_{0}^{1}\left(\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}\frac{x}{2}\right\rfloor }{3^{k}}\right)^{2}d\frac{x}{2}-18\int_{\frac{1}{2}}^{1}\left(\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}\frac{x}{2}\right\rfloor }{3^{k}}\right)^{2}d\frac{x}{2}\\
& =\frac{18}{17}\int_{\frac{1}{2}}^{1}\left(\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}\frac{x}{2}\right\rfloor }{3^{k}}\right)^{2}d\frac{x}{2}\\
& =\frac{18}{17}\int_{0}^{\frac{1}{2}}\left(\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}\left(\frac{x}{2}+\frac{1}{2}\right)\right\rfloor }{3^{k}}\right)^{2}d\frac{x}{2}\\
& =\frac{18}{17}\int_{0}^{\frac{1}{2}}\left(\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}\frac{x}{2}\right\rfloor +2^{k-1}}{3^{k}}\right)^{2}d\frac{x}{2}\\
& =\frac{18}{17}\int_{0}^{\frac{1}{2}}\left\{ \sum_{k=1}^{\infty}\left(\frac{\left\lfloor 2^{k}\frac{x}{2}\right\rfloor }{3^{k}}+\frac{1}{3}\left(\frac{2}{3}\right)^{k-1}\right)\right\} ^{2}d\frac{x}{2}\\
& =\frac{18}{17}\int_{0}^{\frac{1}{2}}\left\{ \left(\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}\frac{x}{2}\right\rfloor }{3^{k}}\right)+\frac{1}{3}\cdot\frac{1}{1-\frac{2}{3}}\right\} ^{2}d\frac{x}{2}\\
& =\frac{18}{17}\int_{0}^{\frac{1}{2}}\left\{ \left(\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}\frac{x}{2}\right\rfloor }{3^{k}}\right)+1\right\} ^{2}d\frac{x}{2}\\
& =\frac{18}{17}\int_{0}^{\frac{1}{2}}\left\{ \left(\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}\frac{x}{2}\right\rfloor }{3^{k}}\right)^{2}+2\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}\frac{x}{2}\right\rfloor }{3^{k}}+1\right\} d\frac{x}{2}\\
& =\frac{1}{17}\cdot18\int_{0}^{\frac{1}{2}}\left(\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}\frac{x}{2}\right\rfloor }{3^{k}}\right)^{2}d\frac{x}{2}+\frac{18}{17}\int_{0}^{\frac{1}{2}}\left(2\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}\frac{x}{2}\right\rfloor }{3^{k}}+1\right)d\frac{x}{2}\\
& =\frac{17}{17-1}\cdot\frac{18}{17}\int_{0}^{\frac{1}{2}}\left(2\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}\frac{x}{2}\right\rfloor }{3^{k}}+1\right)d\frac{x}{2}\\
& =\frac{9}{8}\int_{0}^{\frac{1}{2}}\left(2\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}\frac{x}{2}\right\rfloor }{3^{k}}+1\right)d\frac{x}{2}\\
& =\frac{9}{4}\int_{0}^{\frac{1}{2}}\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}\frac{x}{2}\right\rfloor }{3^{k}}d\frac{x}{2}+\frac{9}{16}\\
& =\frac{9}{4}\sum_{k=1}^{\infty}\frac{1}{3^{k}}\int_{0}^{\frac{1}{2}}\left\lfloor 2^{k}\frac{x}{2}\right\rfloor d\frac{x}{2}+\frac{9}{16}\\
& =\frac{9}{4}\sum_{k=1}^{\infty}\frac{1}{2^{k}3^{k}}\int_{0}^{2^{k-1}}\left\lfloor 2^{k}\frac{x}{2}\right\rfloor d\frac{2^{k}x}{2}+\frac{9}{16}\\
& =\frac{9}{4}\sum_{k=1}^{\infty}\frac{1}{2^{k}3^{k}}\sum_{j=1}^{2^{k-1}-1}j+\frac{9}{16}\\
& =\frac{9}{4}\sum_{k=1}^{\infty}\frac{1}{2^{k}3^{k}}\frac{\left(2^{k-1}-1\right)2^{k-1}}{2}+\frac{9}{16}\\
& =\frac{9}{4}\sum_{k=1}^{\infty}\frac{2^{2k-2}-2^{k-1}}{2^{k+1}3^{k}}+\frac{9}{16}\\
& =\frac{9}{4}\sum_{k=1}^{\infty}\frac{2^{k-3}-2^{-2}}{3^{k}}+\frac{9}{16}\\
& =\frac{9}{4}\sum_{k=1}^{\infty}\left(\frac{1}{2^{2}3}\left(\frac{2}{3}\right)^{k-1}-\frac{1}{2^{2}3}\cdot\frac{1}{3^{k-1}}\right)+\frac{9}{16}\\
& =\frac{9}{4}\left(\frac{1}{2^{2}3}\cdot\frac{1}{1-\frac{2}{3}}-\frac{1}{2^{2}3}\cdot\frac{1}{1-\frac{1}{3}}\right)+\frac{9}{16}\\
& =\frac{9}{4}\left(\frac{1}{2^{2}}-\frac{1}{2^{3}}\right)+\frac{9}{16}\\
& =\frac{9}{32}+\frac{9}{16}\\
& =\frac{27}{32}
\end{align*}
ページ情報
タイトル | 床関数の総和の2乗の定積分 |
URL | https://www.nomuramath.com/ja82p311/ |
SNSボタン |
分母に2乗根と3乗根の積分
\[
\int\frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}dx=2x^{\frac{1}{2}}-3x^{\frac{1}{3}}+6x^{\frac{1}{6}}-6\log\left(1+x^{\frac{1}{6}}\right)
\]
tanの平方根の積分
\[
\int\sqrt{\tan x}dx=\frac{\sqrt{2}}{4}\log\left(\tan x-\sqrt{2\tan x}+1\right)-\frac{\sqrt{2}}{4}\log\left(\tan x+\sqrt{2\tan x}+1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}-1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}+1\right)+C
\]
tanの立方根の積分
\[
\int\sqrt[3]{\tan x}dx=\frac{1}{4}\log\left(\tan^{\frac{4}{3}}x-\tan^{\frac{2}{3}}x+1\right)+\frac{\sqrt{3}}{2}\tan^{\bullet}\left(\frac{2\tan^{\frac{2}{3}}x-1}{\sqrt{3}}\right)-\frac{1}{2}\log\left(\tan^{\frac{2}{3}}x+1\right)+C
\]
πとγがでてくる定積分
\[
\int_{0}^{\infty}\frac{\sin\left(x\right)\log\left(x\right)}{x}dx=?
\]