射影と成分への射影の定義
射影と成分への射影の定義
このとき、写像
\[ \pi_{M}:\prod_{\lambda\in\lambda}A_{\lambda}\rightarrow\prod_{\mu\in M}A_{\mu},\left(x_{\lambda}\right)_{\lambda\in\Lambda}\mapsto\left(x_{\mu}\right)_{\mu\in M} \] を\(M\)上の射影\(\pi_{M}\)という。
添え字集合\(M\)が一元集合\(M=\left\{ \mu\right\} \)のときは射影\(\pi_{M}\)は射影\(\pi_{\mu}\)とも書かれ、成分への射影となる。
各直積因子\(A_{\mu}\)に対し、全射
\[ \pi_{\mu}:\prod_{\lambda\in\Lambda}A_{\lambda}\rightarrow A_{\mu},\left(a_{\lambda}\right)_{\lambda\in\Lambda}\mapsto a_{\mu} \] を第\(\mu\)成分への射影という。
(1)射影
集合族\(\left\{ A_{\lambda}\right\} _{\lambda\in\Lambda}\)あるとき部分集合\(M\subseteq\Lambda\)を考える。このとき、写像
\[ \pi_{M}:\prod_{\lambda\in\lambda}A_{\lambda}\rightarrow\prod_{\mu\in M}A_{\mu},\left(x_{\lambda}\right)_{\lambda\in\Lambda}\mapsto\left(x_{\mu}\right)_{\mu\in M} \] を\(M\)上の射影\(\pi_{M}\)という。
添え字集合\(M\)が一元集合\(M=\left\{ \mu\right\} \)のときは射影\(\pi_{M}\)は射影\(\pi_{\mu}\)とも書かれ、成分への射影となる。
(2)成分への射影
直積\(\prod_{\lambda\in\Lambda}A_{\lambda}\)があるとき、各\(A_{\lambda}\)を直積因子という。各直積因子\(A_{\mu}\)に対し、全射
\[ \pi_{\mu}:\prod_{\lambda\in\Lambda}A_{\lambda}\rightarrow A_{\mu},\left(a_{\lambda}\right)_{\lambda\in\Lambda}\mapsto a_{\mu} \] を第\(\mu\)成分への射影という。
集合\(A,B\)があり直積集合\(A\times B\)から\(A\)への写像\(\pi_{A}:A\times B\rightarrow A,\left(a,b\right)\mapsto a\)は\(A\)成分への射影となる。
ページ情報
タイトル | 射影と成分への射影の定義 |
URL | https://www.nomuramath.com/ipsjlej7/ |
SNSボタン |
一様連続であれば各点連続
一様連続であれば各点連続である。
パリ距離は距離空間
\[
d\left(\boldsymbol{x},\boldsymbol{y}\right)=\begin{cases}
\left|\boldsymbol{x}-\boldsymbol{y}\right| & \exists c\in\mathbb{R},\boldsymbol{y}=c\boldsymbol{x}\\
\left|\boldsymbol{x}\right|+\left|\boldsymbol{y}\right| & other
\end{cases}
\]
フーリエ変換でのパーセバルの等式
\[
\int_{-\infty}^{\infty}\overline{f\left(x\right)}g\left(x\right)dx=\int_{-\infty}^{\infty}\overline{F\left(\xi\right)}G\left(\xi\right)d\xi
\]
係数が何の値か気付けるかな
\[
x=1+\sqrt[5]{2}+\sqrt[5]{4}+\sqrt[5]{8}+\sqrt[5]{16},\frac{1}{x^{5}}+\frac{5}{x^{4}}+\frac{10}{x^{3}}+\frac{10}{x^{2}}+\frac{5}{x}+1=?
\]