論理演算子の移項
論理演算子の移項
\(P,Q,R\)は命題変数とする。
マイナスパターン(論理包含)
(1)重要
\[ \left(P\land R\right)\rightarrow Q\Leftrightarrow P\rightarrow\left(Q\lor\lnot R\right) \]
(2)重要
\[ P\rightarrow\left(Q\lor R\right)\Leftrightarrow\left(P\land\lnot R\right)\rightarrow Q \]
(3)重要
\[ \left(P\land R\right)\nrightarrow Q\Leftrightarrow P\nrightarrow\left(Q\lor\lnot R\right) \]
(4)重要
\[ P\nrightarrow\left(Q\lor R\right)\Leftrightarrow\left(P\land\lnot R\right)\nrightarrow Q \]
プラスパターン
(5)
\[ \left(P\lor R\right)\lor Q\Leftrightarrow P\lor\left(Q\lor R\right) \]
(6)
\[ \left(P\leftarrow R\right)\lor Q\Leftrightarrow P\lor\left(Q\leftarrow R\right) \]
(7)
\[ \left(P\land R\right)\land Q\Leftrightarrow P\land\left(Q\land R\right) \]
(8)
\[ \left(P\nrightarrow R\right)\land Q\Leftrightarrow P\land\left(Q\nrightarrow R\right) \]
(9)
\[ \left(P\leftrightarrow R\right)\leftrightarrow Q\Leftrightarrow P\leftrightarrow\left(Q\leftrightarrow R\right) \]
(10)
\[ \left(P\nleftrightarrow R\right)\leftrightarrow Q\Leftrightarrow P\leftrightarrow\left(Q\nleftrightarrow R\right) \]
(11)
\[ \left(P\lor R\right)\downarrow Q\Leftrightarrow P\downarrow\left(Q\lor R\right) \]
(12)
\[ \left(P\leftarrow R\right)\downarrow Q\Leftrightarrow P\downarrow\left(Q\leftarrow R\right) \]
(13)
\[ \left(P\land R\right)\uparrow Q\Leftrightarrow P\uparrow\left(Q\land R\right) \]
(14)
\[ \left(P\nrightarrow R\right)\uparrow Q\Leftrightarrow P\uparrow\left(Q\nrightarrow R\right) \]
(15)
\[ \left(P\leftrightarrow R\right)\nleftrightarrow Q\Leftrightarrow P\nleftrightarrow\left(Q\leftrightarrow R\right) \]
(16)
\[ \left(P\nleftrightarrow R\right)\nleftrightarrow Q\Leftrightarrow P\nleftrightarrow\left(Q\nleftrightarrow R\right) \]
(1)
\begin{align*} \left(P\land R\right)\rightarrow Q & \Leftrightarrow\lnot\left(P\land R\right)\lor Q\\ & \Leftrightarrow\lnot P\lor\lnot R\lor Q\\ & \Leftrightarrow\lnot P\lor\left(Q\lor\lnot R\right)\\ & \Leftrightarrow P\rightarrow\left(Q\lor\lnot R\right) \end{align*}
(2)
(1)で\(R\)を\(\lnot R\)とすればいい。
(3)
(1)より、
\begin{align*} \left(P\land R\right)\nrightarrow Q & \Leftrightarrow\lnot\left\{ \left(P\land R\right)\rightarrow Q\right\} \\ & \Leftrightarrow\lnot\left\{ P\rightarrow\left(Q\lor\lnot R\right)\right\} \\ & \Leftrightarrow P\nrightarrow\left(Q\lor\lnot R\right) \end{align*}
(4)
(3)で\(R\)を\(\lnot R\)とすればいい。
(5)
\begin{align*} \left(P\lor R\right)\lor Q & \Leftrightarrow P\lor R\lor Q\\ & \Leftrightarrow P\lor Q\lor R\\ & \Leftrightarrow P\lor\left(Q\lor R\right) \end{align*}
(6)
\begin{align*} \left(P\leftarrow R\right)\lor Q & \Leftrightarrow P\lor\lnot R\lor Q\\ & \Leftrightarrow P\lor Q\lor\lnot R\\ & \Leftrightarrow P\lor\left(Q\leftarrow R\right) \end{align*}
(7)
\begin{align*} \left(P\land R\right)\land Q & \Leftrightarrow P\land R\land Q\\ & \Leftrightarrow P\land Q\land R\\ & \Leftrightarrow P\land\left(Q\land R\right) \end{align*}
(8)
\begin{align*} \left(P\nrightarrow R\right)\land Q & \Leftrightarrow P\land\lnot R\land Q\\ & \Leftrightarrow P\land Q\land\lnot R\\ & \Leftrightarrow P\land\left(Q\nrightarrow R\right) \end{align*}
(9)
\begin{align*} \left(P\leftrightarrow R\right)\leftrightarrow Q & \Leftrightarrow P\leftrightarrow R\leftrightarrow Q\\ & \Leftrightarrow P\leftrightarrow Q\leftrightarrow R\\ & \Leftrightarrow P\leftrightarrow\left(Q\leftrightarrow R\right) \end{align*}
(10)
\begin{align*} \left(P\nleftrightarrow R\right)\leftrightarrow Q & \Leftrightarrow P\nleftrightarrow R\leftrightarrow Q\\ & \Leftrightarrow P\nleftrightarrow Q\leftrightarrow R\\ & \Leftrightarrow P\leftrightarrow\left(Q\nleftrightarrow R\right) \end{align*}
(11)
\begin{align*} \left(P\lor R\right)\downarrow Q & \Leftrightarrow\lnot P\land\lnot R\land\lnot Q\\ & \Leftrightarrow\lnot P\land\lnot Q\land\lnot R\\ & \Leftrightarrow\lnot P\land\lnot\left(Q\lor R\right)\\ & \Leftrightarrow P\downarrow\left(Q\lor R\right) \end{align*}
(12)
\begin{align*} \left(P\leftarrow R\right)\downarrow Q & \Leftrightarrow\lnot\left(P\lor\lnot R\right)\land\lnot Q\\ & \Leftrightarrow\lnot P\land R\land\lnot Q\\ & \Leftrightarrow\lnot P\land\lnot Q\land R\\ & \Leftrightarrow\lnot P\land\lnot\left(Q\leftarrow R\right)\\ & \Leftrightarrow P\downarrow\left(Q\leftarrow R\right) \end{align*}
(13)
\begin{align*} \left(P\land R\right)\uparrow Q & \Leftrightarrow\lnot P\lor\lnot R\lor\lnot Q\\ & \Leftrightarrow\lnot P\lor\lnot Q\lor\lnot R\\ & \Leftrightarrow\lnot P\lor\lnot\left(Q\land R\right)\\ & \Leftrightarrow P\uparrow\left(Q\land R\right) \end{align*}
(14)
\begin{align*} \left(P\nrightarrow R\right)\uparrow Q & \Leftrightarrow\lnot\left(P\land\lnot R\right)\lor\lnot Q\\ & \Leftrightarrow\lnot P\lor R\lor\lnot Q\\ & \Leftrightarrow\lnot P\lor\lnot Q\lor R\\ & \Leftrightarrow\lnot P\lor\lnot\left(Q\nrightarrow R\right)\\ & \Leftrightarrow P\uparrow\left(Q\nrightarrow R\right) \end{align*}
(15)
\begin{align*} \left(P\leftrightarrow R\right)\nleftrightarrow Q & \Leftrightarrow P\leftrightarrow R\nleftrightarrow Q\\ & \Leftrightarrow P\leftrightarrow Q\nleftrightarrow R\\ & \Leftrightarrow P\nleftrightarrow\left(Q\leftrightarrow R\right) \end{align*}
(16)
\begin{align*} \left(P\nleftrightarrow R\right)\nleftrightarrow Q & \Leftrightarrow P\nleftrightarrow R\nleftrightarrow Q\\ & \Leftrightarrow P\nleftrightarrow Q\nleftrightarrow R\\ & \Leftrightarrow P\nleftrightarrow\left(Q\nleftrightarrow R\right) \end{align*}
ページ情報
タイトル | 論理演算子の移項 |
URL | https://www.nomuramath.com/icxp0ez5/ |
SNSボタン |