三角関数を正接の半角、双曲線関数を双曲線正接の半角で表す。
三角関数を正接の半角で表す
(1)
\[ \tan z=\frac{2\tan\frac{z}{2}}{1-\tan^{2}\frac{z}{2}} \](2)
\[ \sin z=\frac{2\tan\frac{z}{2}}{1+\tan^{2}\frac{z}{2}} \](3)
\[ \cos z=\frac{1-\tan^{2}\frac{z}{2}}{1+\tan^{2}\frac{z}{2}} \](1)
\begin{align*} \tan z & =\tan\left(\frac{z}{2}+\frac{z}{2}\right)\\ & =\frac{\tan\frac{z}{2}+\tan\frac{z}{2}}{1-\tan\frac{z}{2}\tan\frac{z}{2}}\\ & =\frac{2\tan\frac{z}{2}}{1-\tan^{2}\frac{z}{2}} \end{align*}(2)
\begin{align*} \sin z & =\sin\left(\frac{z}{2}+\frac{z}{2}\right)\\ & =2\sin\frac{z}{2}\cos\frac{z}{2}\\ & =2\tan\frac{z}{2}\cos^{2}\frac{z}{2}\\ & =\frac{2\tan\frac{z}{2}}{1+\tan^{2}\frac{z}{2}} \end{align*}(3)
\begin{align*} \cos z & =\cos\left(\frac{z}{2}+\frac{z}{2}\right)\\ & =\cos^{2}\frac{z}{2}-\sin^{2}\frac{z}{2}\\ & =\left(1-\tan^{2}\frac{z}{2}\right)\cos^{2}\frac{z}{2}\\ & =\frac{1-\tan^{2}\frac{z}{2}}{1+\tan^{2}\frac{z}{2}} \end{align*}双曲線関数を双曲線正接の半角で表す
(1)
\[ \tanh z=\frac{2\tanh\frac{z}{2}}{1+\tanh^{2}\frac{z}{2}} \](2)
\[ \sinh z=\frac{2\tanh\frac{z}{2}}{1-\tanh^{2}\frac{z}{2}} \](3)
\[ \cosh z=\frac{1+\tanh^{2}\frac{z}{2}}{1-\tanh^{2}\frac{z}{2}} \](1)
\begin{align*} \tanh z & =-i\tan\left(iz\right)\\ & =-i\frac{2\tan\frac{iz}{2}}{1-\tan^{2}\frac{iz}{2}}\\ & =\frac{2\tanh\frac{z}{2}}{1+\tanh^{2}\frac{z}{2}} \end{align*}(2)
\begin{align*} \sinh z & =-i\sin\left(iz\right)\\ & =-i\frac{2\tan\frac{iz}{2}}{1+\tan^{2}\frac{iz}{2}}\\ & =\frac{2\tanh\frac{z}{2}}{1-\tanh^{2}\frac{z}{2}} \end{align*}(3)
\begin{align*} \cosh z & =\cos\left(iz\right)\\ & =\frac{1-\tan^{2}\frac{iz}{2}}{1+\tan^{2}\frac{iz}{2}}\\ & =\frac{1+\tanh^{2}\frac{z}{2}}{1-\tanh^{2}\frac{z}{2}} \end{align*}ページ情報
タイトル | 三角関数を正接の半角、双曲線関数を双曲線正接の半角で表す。 |
URL | https://www.nomuramath.com/hi9nbkia/ |
SNSボタン |
三角関数と双曲線関数の積和公式と和積公式
\[ \sin\alpha\cos\beta=\frac{1}{2}\left\{ \sin(\alpha+\beta)+\sin(\alpha-\beta)\right\}
\]
逆三角関数と逆双曲線関数の冪乗積分漸化式
\[
\int\sin^{\bullet,n}xdx=x\sin^{\bullet,n}x+n\sqrt{1-x^{2}}\sin^{\bullet,n-1}x-n(n-1)\int\sin^{\bullet,n-2}xdx
\]
三角関数と双曲線関数の積分
\[
\int\cos xdx=\sin x
\]
三角関数と双曲線関数の2倍角と3倍角公式
\[
\sin2x=2\sin x\cos x
\]