三角関数を正接の半角、双曲線関数を双曲線正接の半角で表す。
三角関数を正接の半角で表す
(1)
\[ \tan z=\frac{2\tan\frac{z}{2}}{1-\tan^{2}\frac{z}{2}} \](2)
\[ \sin z=\frac{2\tan\frac{z}{2}}{1+\tan^{2}\frac{z}{2}} \](3)
\[ \cos z=\frac{1-\tan^{2}\frac{z}{2}}{1+\tan^{2}\frac{z}{2}} \](1)
\begin{align*} \tan z & =\tan\left(\frac{z}{2}+\frac{z}{2}\right)\\ & =\frac{\tan\frac{z}{2}+\tan\frac{z}{2}}{1-\tan\frac{z}{2}\tan\frac{z}{2}}\\ & =\frac{2\tan\frac{z}{2}}{1-\tan^{2}\frac{z}{2}} \end{align*}(2)
\begin{align*} \sin z & =\sin\left(\frac{z}{2}+\frac{z}{2}\right)\\ & =2\sin\frac{z}{2}\cos\frac{z}{2}\\ & =2\tan\frac{z}{2}\cos^{2}\frac{z}{2}\\ & =\frac{2\tan\frac{z}{2}}{1+\tan^{2}\frac{z}{2}} \end{align*}(3)
\begin{align*} \cos z & =\cos\left(\frac{z}{2}+\frac{z}{2}\right)\\ & =\cos^{2}\frac{z}{2}-\sin^{2}\frac{z}{2}\\ & =\left(1-\tan^{2}\frac{z}{2}\right)\cos^{2}\frac{z}{2}\\ & =\frac{1-\tan^{2}\frac{z}{2}}{1+\tan^{2}\frac{z}{2}} \end{align*}双曲線関数を双曲線正接の半角で表す
(1)
\[ \tanh z=\frac{2\tanh\frac{z}{2}}{1+\tanh^{2}\frac{z}{2}} \](2)
\[ \sinh z=\frac{2\tanh\frac{z}{2}}{1-\tanh^{2}\frac{z}{2}} \](3)
\[ \cosh z=\frac{1+\tanh^{2}\frac{z}{2}}{1-\tanh^{2}\frac{z}{2}} \](1)
\begin{align*} \tanh z & =-i\tan\left(iz\right)\\ & =-i\frac{2\tan\frac{iz}{2}}{1-\tan^{2}\frac{iz}{2}}\\ & =\frac{2\tanh\frac{z}{2}}{1+\tanh^{2}\frac{z}{2}} \end{align*}(2)
\begin{align*} \sinh z & =-i\sin\left(iz\right)\\ & =-i\frac{2\tan\frac{iz}{2}}{1+\tan^{2}\frac{iz}{2}}\\ & =\frac{2\tanh\frac{z}{2}}{1-\tanh^{2}\frac{z}{2}} \end{align*}(3)
\begin{align*} \cosh z & =\cos\left(iz\right)\\ & =\frac{1-\tan^{2}\frac{iz}{2}}{1+\tan^{2}\frac{iz}{2}}\\ & =\frac{1+\tanh^{2}\frac{z}{2}}{1-\tanh^{2}\frac{z}{2}} \end{align*}ページ情報
| タイトル | 三角関数を正接の半角、双曲線関数を双曲線正接の半角で表す。 |
| URL | https://www.nomuramath.com/hi9nbkia/ |
| SNSボタン |
巾関数と逆三角関数・逆双曲線関数の積の積分
\[
\int z^{\alpha}\Sin^{\bullet}zdz=\frac{1}{\alpha+1}\left(z^{\alpha+1}\Sin^{\bullet}z-\frac{z^{\alpha+2}}{\alpha+2}F\left(\frac{1}{2},\frac{\alpha}{2}+1;\frac{\alpha}{2}+2;z^{2}\right)\right)+C
\]
正弦と余弦のべき乗の積の積分の超幾何関数表示
\[
\int\sin^{\alpha}\left(x\right)\cos^{\beta}\left(x\right)dx=\frac{\cos^{\beta-1}}{\left(\cos^{2}\left(x\right)\right)^{\frac{\beta-1}{2}}}\frac{\sin^{\alpha+1}\left(x\right)}{\alpha+1}F\left(\frac{1-\beta}{2},\frac{\alpha+1}{2};\frac{\alpha+3}{2};\sin^{2}\left(x\right)\right)+C
\]
1±itan(z)など
\[
1\pm i\tan z=\frac{1}{\cos\left(2\Re z\right)+\cosh\left(2\Im z\right)}\left(e^{\pm2i\Re z}+e^{\mp2\Im z}\right)
\]
正接・双曲線正接の総和展開
\[
\tan\pi z=\frac{2z}{\pi}\sum_{k=1}^{\infty}\frac{1}{\left(k-\frac{1}{2}\right)^{2}-z^{2}}
\]

