距離空間ならば第1可算空間
距離空間ならば第1可算空間
距離空間\(\left(X,d\right)\)ならば第1可算空間となる。
逆は一般的に成り立たない。
距離空間\(\left(X,d\right)\)ならば第1可算空間となる。
逆は一般的に成り立たない。
\(\Rightarrow\)
任意の\(x\in X\)に対し\(\left\{ U\left(x,\frac{1}{n}\right);n\in\mathbb{N}\right\} \)は\(x\)の基本近傍系となり濃度は可算無限なので第1可算空間となる。\(\Leftarrow\)は一般的に成り立たない。
反例で示す。上限位相は第1可算空間であるが距離化不可能である。
故に\(\Leftarrow\)は一般的に成り立たない。
ページ情報
タイトル | 距離空間ならば第1可算空間 |
URL | https://www.nomuramath.com/h66buev1/ |
SNSボタン |
距離空間でのε-近傍・開集合・閉集合・開集合全体の集合・開集合族の定義
\[
U_{\epsilon}\left(a\right)=\left\{ x\in X;d\left(x,a\right)<\epsilon\right\}
\]
部分距離空間・直積距離空間の定義
\[
d\left(P,Q\right)^{2}:=\sum_{k=1}^{n}d_{k}\left(p_{k},q_{k}\right)^{2}
\]
距離空間での内点(内部)・外点(外部)・境界(境界点)・触点(閉包)・集積点(導集合)・孤立点の定義
\[
\exists\epsilon>0,U_{\epsilon}\left(x\right)\subseteq A
\]
ε近傍(開球)の定義
\[
U\left(a,\epsilon\right)=\left\{ x\in X;d\left(a,x\right)<\epsilon\right\}
\]