距離空間ならば第1可算空間
距離空間ならば第1可算空間
距離空間\(\left(X,d\right)\)ならば第1可算空間となる。
逆は一般的に成り立たない。
距離空間\(\left(X,d\right)\)ならば第1可算空間となる。
逆は一般的に成り立たない。
\(\Rightarrow\)
任意の\(x\in X\)に対し\(\left\{ U\left(x,\frac{1}{n}\right);n\in\mathbb{N}\right\} \)は\(x\)の基本近傍系となり濃度は可算無限なので第1可算空間となる。\(\Leftarrow\)は一般的に成り立たない。
反例で示す。上限位相は第1可算空間であるが距離化不可能である。
故に\(\Leftarrow\)は一般的に成り立たない。
ページ情報
タイトル | 距離空間ならば第1可算空間 |
URL | https://www.nomuramath.com/h66buev1/ |
SNSボタン |
有限集合で距離化可能なのは離散位相のみ
有限位相空間では距離化可能と離散位相は同値である。
完備距離空間の像は完備部分集合とは限らない
完備距離空間の像は完備部分集合とは限らない
部分距離空間・直積距離空間の定義
\[
d\left(P,Q\right)^{2}:=\sum_{k=1}^{n}d_{k}\left(p_{k},q_{k}\right)^{2}
\]
点と集合との距離と集合同士の距離の定義
\[
d\left(A,B\right):=\inf\left\{ d\left(a,b\right);a\in A,b\in B\right\}
\]