距離空間ならば第1可算空間
距離空間ならば第1可算空間
距離空間\(\left(X,d\right)\)ならば第1可算空間となる。
逆は一般的に成り立たない。
距離空間\(\left(X,d\right)\)ならば第1可算空間となる。
逆は一般的に成り立たない。
\(\Rightarrow\)
任意の\(x\in X\)に対し\(\left\{ U\left(x,\frac{1}{n}\right);n\in\mathbb{N}\right\} \)は\(x\)の基本近傍系となり濃度は可算無限なので第1可算空間となる。\(\Leftarrow\)は一般的に成り立たない。
反例で示す。上限位相は第1可算空間であるが距離化不可能である。
故に\(\Leftarrow\)は一般的に成り立たない。
ページ情報
タイトル | 距離空間ならば第1可算空間 |
URL | https://www.nomuramath.com/h66buev1/ |
SNSボタン |
有限集合で距離化可能なのは離散位相のみ
有限位相空間では距離化可能と離散位相は同値である。
距離空間の有界・直径と全有界の定義
\[
\diam\left(A\right):=\sup\left\{ d\left(a,b\right);a,b\in A\right\}
\]
距離空間での集積点と閉包の点列による別定義
\[
x\in A^{d}\leftrightarrow\exists\left(x_{n}\right)_{n=1}^{\infty}\subseteq A\setminus\left\{ x\right\} ,\lim_{n\rightarrow\infty}x_{n}=x
\]
一様連続であれば各点連続
一様連続であれば各点連続である。