距離空間ならば第1可算空間
距離空間ならば第1可算空間
距離空間\(\left(X,d\right)\)ならば第1可算空間となる。
逆は一般的に成り立たない。
\(\Rightarrow\)
任意の\(x\in X\)に対し\(\left\{ U\left(x,\frac{1}{n}\right);n\in\mathbb{N}\right\} \)は\(x\)の基本近傍系となり濃度は可算無限なので第1可算空間となる。
\(\Leftarrow\)は一般的に成り立たない。
反例で示す。
上限位相は第1可算空間であるが距離化不可能である。
故に\(\Leftarrow\)は一般的に成り立たない。
ページ情報
タイトル | 距離空間ならば第1可算空間 |
URL | https://www.nomuramath.com/h66buev1/ |
SNSボタン |
距離空間での有界列の定義
\[
d\left(x_{n},a\right)\leq M
\]
距離空間での開集合と閉集合の定義
\[
\forall x\in A,\exists\epsilon>0,U_{\epsilon}\left(x\right)\subseteq A
\]
ε近傍(開球)の定義
\[
U_{\epsilon}\left(a\right):=\left\{ x\in X;d\left(a,x\right)<\epsilon\right\}
\]
単射により誘導された距離空間
\[
d_{f}\left(a,b\right)=d\left(f\left(a\right),f\left(b\right)\right)
\]