微分形接触型積分
(1)微分形接触型積分
\[ \int f'(g(x))g'(x)dx=f(g(x)) \](2)
\[ \int\frac{f'(x)}{f(x)}dx=\log\left|f(x)\right| \](1)
\begin{align*} \int f'(g(x))g'(x)dx & =\int f'(g(x))d\left(g(x)\right)\\ & =f(g(x)) \end{align*}(2)
\begin{align*} \int\frac{f'(x)}{f(x)}dx & =\int\frac{1}{f(x)}d\left(f(x)\right)\\ & =\int\frac{d\log\left|f(x)\right|}{d\left(f(x)\right)}d\left(f(x)\right)\\ & =\log\left|f(x)\right| \end{align*}ページ情報
タイトル | 微分形接触型積分 |
URL | https://www.nomuramath.com/gu6e1daw/ |
SNSボタン |
微分の基本公式
\[
\left(f(x)g(x)\right)'=f'(x)g(x)+f(x)g'(x)
\]
冪関数と指数関数の積の積分
\[
\int z^{\alpha}e^{\beta z}dz=\frac{z^{\alpha}}{\beta\left(-\beta z\right)^{\alpha}}\Gamma\left(\alpha+1,-\beta z\right)+C
\]
基本関数の微分
\[
\left(a^{x}\right)'=a^{x}\log a
\]
ルートの中に2乗を含む積分
\[
\int f\left(\sqrt{a^{2}-x^{2}}\right)dx=a\int f\left(a\cos t\right)\cos tdt\cnd{x=a\sin t}
\]