負数の偏角と対数
負数の偏角と対数
(1)
\begin{align*} \Arg\alpha-\Arg\left(-\alpha\right) & =2\pi H_{0}\left(\Arg\left(\alpha\right)\right)-\pi\\ & =\pi-2\pi H_{0}\left(\Arg\left(-\alpha\right)\right) \end{align*}(2)
\begin{align*} \Log\alpha-\Log\left(-\alpha\right) & =i\left(2\pi H_{0}\left(\Arg\left(\alpha\right)\right)-\pi\right)\\ & =i\left(\pi-2\pi H_{0}\left(\Arg\left(-\alpha\right)\right)\right) \end{align*}-
\(H_{c}\left(x\right)\)はヘヴィサイドの階段関数(1)
\begin{align*} \Arg\alpha-\Arg\left(-\alpha\right) & =\Arg\left(-1\right)+2\pi\mzp_{-1,0}\left(-\pi,\pi;\Arg\alpha+\Arg\left(-\alpha^{-1}\right)\right)-2\pi\delta_{\pi,\Arg\left(-\alpha\right)}\\ & =\pi-2\pi H_{0}\left(-\Arg\left(\alpha\right)\right)-2\pi\delta_{\pi,\Arg\left(-\alpha\right)}\\ & =\pi-2\pi\left\{ H_{0}\left(-\Arg\left(\alpha\right)\right)+\delta_{\pi,\Arg\left(-\alpha\right)}\right\} \\ & =\pi-2\pi\left\{ H_{0}\left(-\Arg\left(\alpha\right)\right)+\delta_{0,\Arg\left(\alpha\right)}\right\} \\ & =\pi-2\pi H_{1}\left(-\Arg\left(\alpha\right)\right)\\ & =2\pi\left\{ 1-H_{1}\left(-\Arg\left(\alpha\right)\right)\right\} -\pi\\ & =2\pi H_{0}\left(\Arg\left(\alpha\right)\right)-\pi \end{align*} \(\alpha\rightarrow-\alpha\)とすると、\[ \Arg\alpha-\Arg\left(-\alpha\right)=\pi-2\pi H_{0}\left(\Arg\left(-\alpha\right)\right) \] となる。
(2)
\begin{align*} \Log\alpha-\Log\left(-\alpha\right) & =\Log\left|\alpha\right|+i\Arg\alpha-\left(\Log\left(\left|-\alpha\right|+i\Arg\left(-\alpha\right)\right)\right)\\ & =i\left(\Arg\alpha-\Arg\left(-\alpha\right)\right)\\ & =i\left(2\pi H_{0}\left(\Arg\left(\alpha\right)\right)-\pi\right)\\ & =i\left(\pi-2\pi H_{0}\left(\Arg\left(-\alpha\right)\right)\right) \end{align*}ページ情報
| タイトル | 負数の偏角と対数 |
| URL | https://www.nomuramath.com/d2g7llkh/ |
| SNSボタン |
積が非負実数のべき乗
\[
\left(\Arg\left(\alpha\right)\ne\pi\lor\Arg\left(\beta\right)\ne\pi\right)\land0\leq a\beta\rightarrow\left(\alpha\beta\right)^{\gamma}=\alpha^{\gamma}\beta^{\gamma}
\]
冪乗の性質
\[
\pv\alpha^{\beta}\pv\alpha^{\gamma}=\pv\alpha^{\beta+\gamma}
\]
偏角・対数と絶対値
\[
\Log\left(\left|\alpha\right|\beta\right)=\ln\left|\alpha\right|+\Log\beta
\]
0の極限のべき乗と0の極限乗
\[
\lim_{z\rightarrow0}z^{\alpha}=\begin{cases}
0 & 0<\Re\left(\alpha\right)\\
1 & \alpha=0\\
\text{発散} & \Re\left(\alpha\right)<0\lor\left(\Re\left(\alpha\right)=0\land\Im\left(\alpha\right)\ne0\right)
\end{cases}
\]

