逆2乗の別表示
逆2乗の別表示
\[ \frac{1}{\left(k+1\right)^{2}}=-\int_{0}^{1}x^{k}\log xdx \]
\[ \frac{1}{\left(k+1\right)^{2}}=-\int_{0}^{1}x^{k}\log xdx \]
\begin{align*}
\frac{1}{(k+1)^{2}} & =\frac{1}{(k+1)}\int_{0}^{1}x^{k}dx\\
& =\frac{1}{(k+1)}\left(\left[x^{k+1}\log x\right]_{0}^{1}-\left(k+1\right)\int_{0}^{1}x^{k}\log xdx\right)\\
& =-\int_{0}^{1}x^{k}\log xdx
\end{align*}
ページ情報
| タイトル | 逆2乗の別表示 |
| URL | https://www.nomuramath.com/bjnx3ppm/ |
| SNSボタン |
畳み込みの定義
\[
\left(f*g\right)\left(x\right)=\int f\left(t\right)g\left(x-t\right)dt
\]
凸関数・狭義凸関数・凹関数・狭義凹関数の基本性質
関数$f$が2回微分可能であるとき、$f''>0$ならば$f$が狭義凸関数となるが、逆は一般的に成り立たない。
エジプト式分数の個数
エジプト式分数は無数に存在する。
凸関数・狭義凸関数・準凸関数・凹関数・狭義凹関数・準凹関数の定義
\[
\forall x_{1},x_{2}\in X,\forall t\in\left[0,1\right],f\left(tx_{1}+\left(1-t\right)x_{2}\right)\leq tf\left(x_{1}\right)+\left(1-t\right)f\left(x_{2}\right)
\]

