不完全ベータ関数の性質
不完全ベータ関数の性質
不完全ベータ関数\(B\left(z;\alpha,\beta\right)\)は次の性質がある。
不完全ベータ関数\(B\left(z;\alpha,\beta\right)\)は次の性質がある。
(1)
\[ B\left(0;\alpha,\beta\right)=0 \](2)
\[ B\left(1;\alpha,\beta\right)=B\left(\alpha,\beta\right) \](3)
\[ B\left(z;\alpha,1\right)=\frac{z^{\alpha}}{\alpha} \](4)
\[ B\left(z;1,\beta\right)=\frac{1}{\beta}\left(1-\left(1-z\right)^{\beta}\right) \](5)
\[ B\left(z;\frac{1}{2},0\right)=2\tanh^{\bullet}\left(\sqrt{z}\right) \](6)
\[ B\left(z;\frac{1}{2},\frac{1}{2}\right)=2\sin^{\bullet}\left(\sqrt{z}\right) \](1)
\begin{align*} B\left(0;\alpha,\beta\right) & =\int_{0}^{0}t^{\alpha-1}\left(1-t\right)^{\beta-1}dt\\ & =0 \end{align*}(2)
\begin{align*} B\left(1;\alpha,\beta\right) & =\int_{0}^{1}t^{\alpha-1}\left(1-t\right)^{\beta-1}dt\\ & =B\left(\alpha,\beta\right) \end{align*}(3)
\begin{align*} B\left(z;\alpha,1\right) & =\int_{0}^{z}t^{\alpha-1}\left(1-t\right)^{1-1}dt\\ & =\int_{0}^{z}t^{\alpha-1}dt\\ & =\left[\frac{t^{\alpha}}{\alpha}\right]_{0}^{z}\\ & =\frac{z^{\alpha}}{\alpha} \end{align*}(4)
\begin{align*} B\left(z;1,\beta\right) & =\int_{0}^{z}t^{1-1}\left(1-t\right)^{\beta-1}dt\\ & =-\int_{0}^{z}\left(1-t\right)^{\beta-1}dt\\ & =-\int_{1}^{1-z}t^{\beta-1}dt\\ & =-\left[\frac{t^{\beta}}{\beta}\right]_{1}^{1-z}\\ & =\frac{1}{\beta}\left(1-\left(1-z\right)^{\beta}\right) \end{align*}(5)
\begin{align*} B\left(z;\frac{1}{2},0\right) & =\int_{0}^{z}t^{\frac{1}{2}-1}\left(1-t\right)^{0-1}dt\\ & =\int_{0}^{z}\frac{t^{-\frac{1}{2}}}{1-t}dt\\ & =\int_{0}^{z}\frac{t^{-\frac{1}{2}}}{1-t}dt\\ & =2\int_{0}^{\sqrt{z}}\frac{1}{1-t^{2}}dt\cmt{t^{\frac{1}{2}}\rightarrow t}\\ & =2\left[\tanh^{\bullet}\left(t\right)\right]_{0}^{\sqrt{z}}\\ & =2\tanh^{\bullet}\left(\sqrt{z}\right) \end{align*}(6)
\begin{align*} B\left(z;\frac{1}{2},\frac{1}{2}\right) & =\int_{0}^{z}t^{\frac{1}{2}-1}\left(1-t\right)^{\frac{1}{2}-1}dt\\ & =\int_{0}^{z}\frac{1}{\sqrt{t}\sqrt{1-t}}dt\\ & =2\int_{0}^{\sqrt{z}}\frac{1}{\sqrt{1-t^{2}}}dt\cmt{t^{\frac{1}{2}}\rightarrow t}\\ & =2\left[\sin^{\bullet}\left(t\right)\right]_{0}^{\sqrt{z}}\\ & =2\sin^{\bullet}\left(\sqrt{z}\right) \end{align*}ページ情報
タイトル | 不完全ベータ関数の性質 |
URL | https://www.nomuramath.com/npmya5t1/ |
SNSボタン |
2項係数とベータ関数の関係
\[
B(x,y)=\frac{C(y-1,-x)\pi}{\sin(\pi x)}
\]
ベータ関数の特殊値
\[
B\left(\alpha,1\right)=\frac{1}{\alpha}
\]
ベータ関数と2項係数の逆数の級数表示
\[
B(x,y)=\sum_{k=0}^{\infty}\frac{C(k-y,k)}{x+k}
\]
ベータ関数の微分
\[
\frac{\partial}{\partial x}B(x,y)=B(x,y)\left\{ \psi(x)-\psi(x+y)\right\}
\]