リーマン・ゼータ関数の微分の極限

リーマン・ゼータ関数の微分の極限
リーマン・ゼータ\(\zeta\left(s\right)\)関数の微分の極限について次が成り立つ。
\[ \lim_{x\rightarrow0}x^{n+1}\zeta^{\left(n\right)}\left(1\pm x\right)=\pm\left(-1\right)^{n}n! \]

(1)

\[ \lim_{x\rightarrow0}x\zeta\left(1\pm x\right)=\pm1 \]

(2)

\[ \lim_{x\rightarrow0}x^{2}\zeta^{\left(1\right)}\left(1\pm x\right)=\mp1 \]

(3)

\[ \lim_{x\rightarrow0}x^{3}\zeta^{\left(2\right)}\left(1\pm x\right)=\pm2 \]

(4)

\[ \lim_{x\rightarrow0}x^{4}\zeta^{\left(3\right)}\left(1\pm x\right)=\mp6 \]
\begin{align*} \lim_{x\rightarrow0}x^{n+1}\zeta^{\left(n\right)}\left(1\pm x\right) & =\lim_{x\rightarrow1}\left(\pm\left(x-1\right)\right)^{n+1}\left(\pm1\right)^{n}\frac{d^{n}}{dx^{n}}\zeta\left(x\right)\cmt{1\pm x\rightarrow x}\\ & =\pm\lim_{x\rightarrow1}\left(x-1\right)^{n+1}\frac{d^{n}}{dx^{n}}\left(\frac{1}{x-1}+\sum_{k=0}^{\infty}\frac{\left(-1\right)^{k}}{k!}\gamma_{k}\left(x-1\right)^{k}\right)\\ & =\pm\lim_{x\rightarrow1}\left(x-1\right)^{n+1}\left(\frac{P\left(-1,n\right)}{\left(x-1\right)^{n+1}}+\sum_{k=0}^{\infty}\frac{\left(-1\right)^{k}}{k!}P\left(k,n\right)\gamma_{k}\left(x-1\right)^{k-n}\right)\\ & =\pm\lim_{x\rightarrow1}\left(P\left(-1,n\right)+\sum_{k=0}^{\infty}\frac{\left(-1\right)^{k}}{k!}P\left(k,n\right)\gamma_{k}\left(x-1\right)^{k+1}\right)\\ & =\pm P\left(-1,n\right)\\ & =\pm\left(-1\right)^{n}n! \end{align*}
スポンサー募集!

ページ情報
タイトル
リーマン・ゼータ関数の微分の極限
URL
https://www.nomuramath.com/tsklhmai/
SNSボタン