2項係数の2重和の問題
2項係数の2重和の問題
次の2項係数を含む総和を求めよ。
\[ \sum_{k=0}^{n}C\left(n,k\right)\sum_{j=k}^{n}C\left(n+1,j+1\right)=? \]
次の2項係数を含む総和を求めよ。
\[ \sum_{k=0}^{n}C\left(n,k\right)\sum_{j=k}^{n}C\left(n+1,j+1\right)=? \]
\begin{align*}
\sum_{k=0}^{n}C\left(n,k\right)\sum_{j=k}^{n}C\left(n+1,j+1\right) & =\sum_{k=0}^{n}C\left(n,k\right)\sum_{j=0}^{n-k}C\left(n+1,j+k+1\right)\\
& =\sum_{k=0}^{n}C\left(n,k\right)\sum_{j=0}^{n-k}C\left(n+1,n-j+1\right)\\
& =\sum_{k=0}^{n}C\left(n,k\right)\sum_{j=0}^{n-k}C\left(n+1,j\right)\\
& =\sum_{k=0}^{n}C\left(n,k\right)\sum_{j=k}^{n}C\left(n+1,j-k\right)\\
& =\sum_{k=0}^{n}C\left(n,k\right)\sum_{j=k}^{n}\left\{ C\left(n,j-k\right)+C\left(n,j-k-1\right)\right\} \\
& =\sum_{j=0}^{n}\sum_{k=0}^{j}C\left(n,k\right)\left\{ C\left(n,j-k\right)+C\left(n,j-k-1\right)\right\} \\
& =\sum_{j=0}^{n}\left\{ C\left(2n,j\right)+C\left(2n,j-1\right)\right\} \\
& =\sum_{j=0}^{n}C\left(2n+1,j\right)\\
& =\frac{1}{2}\left\{ \sum_{j=0}^{n}C\left(2n+1,j\right)+\sum_{j=0}^{n}C\left(2n+1,j\right)\right\} \\
& =\frac{1}{2}\left\{ \sum_{j=0}^{n}C\left(2n+1,j\right)+\sum_{j=0}^{n}C\left(2n+1,2n+1-j\right)\right\} \\
& =\frac{1}{2}\left\{ \sum_{j=0}^{n}C\left(2n+1,j\right)+\sum_{j=0}^{n}C\left(2n+1,2n+1-\left(n-j\right)\right)\right\} \\
& =\frac{1}{2}\left\{ \sum_{j=0}^{n}C\left(2n+1,j\right)+\sum_{j=0}^{n}C\left(2n+1,n+1+j\right)\right\} \\
& =\frac{1}{2}\left\{ \sum_{j=0}^{n}C\left(2n+1,j\right)+\sum_{j=n+1}^{2n+1}C\left(2n+1,j\right)\right\} \\
& =\frac{1}{2}\sum_{j=0}^{2n+1}C\left(2n+1,j\right)\\
& =\frac{1}{2}\cdot2^{2n+1}\\
& =4^{n}
\end{align*}
ページ情報
タイトル | 2項係数の2重和の問題 |
URL | https://www.nomuramath.com/y33iq6ei/ |
SNSボタン |
分母にルート同士の和がある総和
\[
\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{7}}+\cdots+\frac{1}{\sqrt{28}+\sqrt{29}}+\frac{1}{\sqrt{29}+\sqrt{30}}=?
\]
2項係数の対称性を使います
\[
\sum_{k=0}^{n}kC^{2}\left(n,k\right)=?
\]
分母に総和がある数の総和
\[
\frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\cdots=?
\]
分母に階乗の和を含む総和
\[
\frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\frac{5}{3!+4!+5!}+\cdots+\frac{100}{98!+99!+100!}=?
\]