3角関数の関数の定積分
3角関数の関数の定積分
次の定積分が成り立つ。
次の定積分が成り立つ。
(1)
\[ \int_{0}^{\frac{\pi}{2}}f\left(\cos x\right)dx=\int_{0}^{\frac{\pi}{2}}f\left(\sin x\right)dx \](2)
\[ \int_{0}^{\pi}xf\left(\sin x\right)dx=\frac{\pi}{2}\int_{0}^{\pi}f\left(\sin x\right)dx \](1)
\begin{align*} \int_{0}^{\frac{\pi}{2}}f\left(\cos x\right)dx & =\int_{0}^{\frac{\pi}{2}}f\left(\cos\left(\frac{\pi}{2}-x\right)\right)dx\\ & =\int_{0}^{\frac{\pi}{2}}f\left(\sin x\right)dx \end{align*}(2)
\begin{align*} \int_{0}^{\pi}xf\left(\sin x\right)dx & =\int_{0}^{\pi}\left(\pi-x\right)f\left(\sin\left(\pi-x\right)\right)dx\cmt{x\rightarrow\pi-x}\\ & =\int_{0}^{\pi}\left(\pi-x\right)f\left(\sin x\right)dx\\ & =\pi\int_{0}^{\pi}f\left(\sin x\right)dx-\int_{0}^{\pi}xf\left(\sin x\right)dx\\ & =\frac{\pi}{2}\int_{0}^{\pi}f\left(\sin x\right)dx \end{align*}ページ情報
タイトル | 3角関数の関数の定積分 |
URL | https://www.nomuramath.com/hotxaiee/ |
SNSボタン |
部分積分と繰り返し部分積分
\[
\int f(x)g(x)dx=\sum_{k=0}^{n-1}\left(-1\right)^{k}f^{(-(k+1))}(x)g^{(k)}(x)+(-1)^{n}\int f^{(-n)}(x)g^{(n)}(x)dx
\]
合成関数の微分
\[
\frac{df(g(x))}{dx}=f'(g(x))g'(x)
\]
微分の基本公式
\[
\left(f(x)g(x)\right)'=f'(x)g(x)+f(x)g'(x)
\]
冪関数と指数関数の積の積分
\[
\int z^{\alpha}e^{\beta z}dz=\frac{z^{\alpha}}{\beta\left(-\beta z\right)^{\alpha}}\Gamma\left(\alpha+1,-\beta z\right)+C
\]