デデキント切断の定義
デデキント切断の定義
全順序集合\(\left(X,\preceq\right)\)を次の条件を満たす集合\(A,B\)に分ける。
全順序集合\(\left(X,\preceq\right)\)を次の条件を満たす集合\(A,B\)に分ける。
(a)
\[ X=A\cup B \](b)
\[ A\cap B=\emptyset\land A\ne\emptyset\land B\ne\emptyset \](c)
\[ a\in A\land b\in B\rightarrow a\preceq b \] このとき、組\(\left(A,B\right)\)をデデキント切断という。デデキント切断\(\left(A,B\right)\)は\(A\)に最大元のあるかないかで2通り、\(B\)に最小元があるかないかで2通りの合計4通りに分けられる。
(1)
\(A\)に最大元、\(B\)に最小元がある。(2)
\(A\)には最大元があるが、\(B\)には最小元がない。(3)
\(A\)には最大元がないが、\(B\)には最小元がある。(4)
\(A\)に最大元がなく、\(B\)にも最小元がない。ページ情報
タイトル | デデキント切断の定義 |
URL | https://www.nomuramath.com/prq8jifu/ |
SNSボタン |
ツォルンの補題
帰納的順序集合$\left(X,\preceq\right)$は極大元をもつ。
順序写像・順序単射・順序埋め込み写像の合成写像
順序写像同士の合成写像は順序写像になる。
有向集合と有向点列の定義
\[
\forall a,b\in\Lambda,\exists c\in\Lambda,a\preceq c\land b\preceq c
\]
順序写像かつ単射の性質
\[
\forall a,b\in X,a\precneqq b\rightarrow f\left(a\right)\precneqq\left(b\right)
\]