順序写像かつ順序単射であることと順序埋め込み写像は同値
順序写像かつ順序単射であることと順序埋め込み写像は同値
順序を保ち(順序写像)かつ順序を反映する写像(順序単射)であることと、順序埋め込み写像は同値である。
順序を保ち(順序写像)かつ順序を反映する写像(順序単射)であることと、順序埋め込み写像は同値である。
\(\left(X,\preceq_{X}\right),\left(Y,\preceq_{Y}\right)\)を順序集合として、\(f:X\rightarrow Y\)を写像とする。
\[ \left\{ a\preceq b\rightarrow f\left(a\right)\preceq f\left(b\right)\right\} \land\left\{ f\left(a\right)\preceq f\left(b\right)\rightarrow a\preceq b\right\} \Leftrightarrow a\preceq b\leftrightarrow f\left(a\right)\preceq f\left(b\right) \] となるので、題意は成り立つ。
\[ \left\{ a\preceq b\rightarrow f\left(a\right)\preceq f\left(b\right)\right\} \land\left\{ f\left(a\right)\preceq f\left(b\right)\rightarrow a\preceq b\right\} \Leftrightarrow a\preceq b\leftrightarrow f\left(a\right)\preceq f\left(b\right) \] となるので、題意は成り立つ。
ページ情報
| タイトル | 順序写像かつ順序単射であることと順序埋め込み写像は同値 |
| URL | https://www.nomuramath.com/g19fqqb4/ |
| SNSボタン |
順序を反映する写像(順序単射)ならば単射
有向集合と有向点列の定義
\[
\forall a,b\in\Lambda,\exists c\in\Lambda,a\preceq c\land b\preceq c
\]
整列集合の基本的な性質
\[
X\left\langle \min X\right\rangle =\emptyset
\]
半順序集合・狭義半順序集合の辞書式順序
\[
\left(x_{1},y_{1}\right)\preceq\left(x_{2},y_{2}\right)\Leftrightarrow x_{1}\prec_{X}x_{2}\lor\left(x_{1}=x_{2}\land y_{1}\preceq_{Y}y_{2}\right)
\]

