対角集合の定義
対角集合の定義
集合\(X\)が与えられているとする。直積集合\(X\times X\)の部分集合\(\Delta_{X}=\left\{ \left(x,y\right)\in X\times X;x=y\right\} =\left\{ \left(x,x\right)\in X\times X\right\} \subseteq X^{2}\)を\(X\times X\)の対角集合または対角線集合という。
集合\(X\)が与えられているとする。直積集合\(X\times X\)の部分集合\(\Delta_{X}=\left\{ \left(x,y\right)\in X\times X;x=y\right\} =\left\{ \left(x,x\right)\in X\times X\right\} \subseteq X^{2}\)を\(X\times X\)の対角集合または対角線集合という。
\(X=\left\{ a,b\right\} \)とすると\(\Delta_{X}=\left\{ \left(a,a\right),\left(b,b\right)\right\} \)となる。
ページ情報
タイトル | 対角集合の定義 |
URL | https://www.nomuramath.com/stzx0gqp/ |
SNSボタン |
『位相空間での和集合・積集合の内部・閉包』を更新しました。
三角関数と双曲線関数の2倍角と3倍角公式
\[
\sin2x=2\sin x\cos x
\]
有界閉区間上の連続関数はリーマン可積分
有界閉区間上の連続関数はリーマン可積分である。
ワイエルシュトラスのM判定法(優級数判定法)