mzp関数の定義と負数の関係
mzp関数の定義と負数の関係
便利なので定義しておきます。
便利なので定義しておきます。
(1)定義
\begin{align*} \mzp_{a,b}\left(x_{1},x_{2};x\right) & :=\begin{cases} -1 & x<x_{1}\\ a & x=x_{1}\\ 0 & x_{1}<x<x_{2}\\ b & x=x_{2}\\ 1 & x_{2}<x \end{cases}\\ & =H_{b}\left(x-x_{2}\right)-H_{a}\left(-\left(x-x_{1}\right)\right)\\ & =H_{b}\left(x-x_{2}\right)-H_{a}\left(x_{1}-x\right) \end{align*}(2)
\[ \mzp_{a,b}\left(x_{1},x_{2};-x\right)=-\mzp_{-b,-a}\left(-x_{2},-x_{1};x\right) \]-
\(H\left(x\right)\)はヘヴィサイドの階段関数(2)
\begin{align*} \mzp_{a,b}\left(x_{1},x_{2};-x\right) & =H_{b}\left(-x-x_{2}\right)-H_{-a}\left(-\left(-x-x_{1}\right)\right)\\ & =-\left(H_{-a}\left(x+x_{1}\right)-H_{b}\left(-\left(x+x_{2}\right)\right)\right)\\ & =-\mzp_{-b,-a}\left(-x_{2},-x_{1};x\right) \end{align*}ページ情報
タイトル | mzp関数の定義と負数の関係 |
URL | https://www.nomuramath.com/u47krym2/ |
SNSボタン |
ヘヴィサイド関数と符号
\[
H_{c}\left(x\right)f\left(\pm x\right)=H_{c}\left(x\right)f\left(\pm\left|x\right|\right)
\]
ヘヴィサイドの階段関数と符号関数・絶対値
\[
H_{\frac{1}{2}}\left(\pm x\right)=\frac{1\pm\sgn x}{2}
\]
ヘヴィサイドの階段関数とクロネッカーのデルタの関係
\[
H_{a}\left(n\right)-H_{b}\left(n-1\right)=a\delta_{0,n}+\left(1-b\right)\delta_{1,n}
\]
ヘヴィサイドの階段関数の2定義値と関数
\[
f\left(x\right)H\left(\pm1\right)=f\left(\pm x\right)H\left(\pm1\right)
\]