第1種・第2種不完全ガンマ関数の漸化式
第1種・第2種不完全ガンマ関数の漸化式
(1)
\[ \gamma\left(a+1,x\right)=a\gamma\left(a,x\right)-x^{a}e^{-x} \](2)
\[ \Gamma\left(a+1,x\right)=a\Gamma\left(a,x\right)+x^{a}e^{-x} \]-
\(\gamma\left(a,x\right)\)は第1種不完全ガンマ関数、\(\Gamma\left(a,x\right)\)は第2種不完全ガンマ関数(1)
\begin{align*} \gamma\left(a+1,x\right) & =\int_{0}^{x}t^{a}e^{-t}dt\\ & =-\left[t^{a}e^{-t}\right]_{0}^{x}+a\int_{0}^{x}t^{a-1}e^{-t}dt\\ & =a\gamma\left(a,x\right)-x^{a}e^{-x} \end{align*}(2)
\begin{align*} \Gamma\left(a+1,x\right) & =\int_{x}^{\infty}t^{a}e^{-t}dt\\ & =-\left[t^{a}e^{-t}\right]_{x}^{\infty}+a\int_{x}^{\infty}t^{a-1}e^{-t}dt\\ & =a\Gamma\left(a,x\right)+x^{a}e^{-x} \end{align*}ページ情報
| タイトル | 第1種・第2種不完全ガンマ関数の漸化式 |
| URL | https://www.nomuramath.com/jf1aac7r/ |
| SNSボタン |
階乗と階乗の逆数の母関数
\[
\frac{x^{a}}{a!}=e^{x}\left(\frac{\Gamma\left(a+1,x\right)}{\Gamma\left(a+1\right)}-\frac{\Gamma\left(a,x\right)}{\Gamma\left(a\right)}\right)
\]
ディガンマ関数・ポリガンマ関数の漸化式・正整数値・半正整数値
\[
\psi(z+1)=\psi(z)+\frac{1}{z}
\]
ガンマ関数の無限乗積
\[
\Gamma(x)=\lim_{n\rightarrow\infty}n^{x}n!Q^{-1}(x,n+1)
\]
ガンマ関数の対数とリーマン・ゼータ関数
\[
\log\Gamma\left(x+1\right)=-\gamma x+\sum_{k=2}^{\infty}\frac{(-1)^{k}\zeta\left(k\right)}{k}x^{k}
\]

