第1種・第2種不完全ガンマ関数の漸化式
第1種・第2種不完全ガンマ関数の漸化式
(1)
\[ \gamma\left(a+1,x\right)=a\gamma\left(a,x\right)-x^{a}e^{-x} \](2)
\[ \Gamma\left(a+1,x\right)=a\Gamma\left(a,x\right)+x^{a}e^{-x} \]-
\(\gamma\left(a,x\right)\)は第1種不完全ガンマ関数、\(\Gamma\left(a,x\right)\)は第2種不完全ガンマ関数(1)
\begin{align*} \gamma\left(a+1,x\right) & =\int_{0}^{x}t^{a}e^{-t}dt\\ & =-\left[t^{a}e^{-t}\right]_{0}^{x}+a\int_{0}^{x}t^{a-1}e^{-t}dt\\ & =a\gamma\left(a,x\right)-x^{a}e^{-x} \end{align*}(2)
\begin{align*} \Gamma\left(a+1,x\right) & =\int_{x}^{\infty}t^{a}e^{-t}dt\\ & =-\left[t^{a}e^{-t}\right]_{x}^{\infty}+a\int_{x}^{\infty}t^{a-1}e^{-t}dt\\ & =a\Gamma\left(a,x\right)+x^{a}e^{-x} \end{align*}ページ情報
タイトル | 第1種・第2種不完全ガンマ関数の漸化式 |
URL | https://www.nomuramath.com/jf1aac7r/ |
SNSボタン |
1次式の総乗と階乗
\[
\prod_{k=a}^{b}\left(kn+r\right)=n^{b-a+1}\frac{\left(b+\frac{r}{n}\right)!}{\Gamma\left(a+\frac{r}{n}\right)}
\]
ポリガンマ関数同士の差の極限
\[
\lim_{z\rightarrow0}\left(\psi^{\left(n\right)}\left(z-m\right)-\psi^{\left(n\right)}\left(z\right)\right)=n!H_{m,n+1}
\]
ディガンマ関数・ポリガンマ関数の漸化式・正整数値・半正整数値
\[
\psi(z+1)=\psi(z)+\frac{1}{z}
\]
ガンマ関数のハンケル積分表示
\[
\Gamma\left(z\right)=\frac{i}{2\sin\left(\pi z\right)}\int_{C}\left(-\tau\right)^{z-1}e^{-\tau}d\tau
\]