偶数ゼータの通常型母関数
偶数ゼータの通常型母関数
\[ \sum_{k=1}^{\infty}\zeta(2k)x^{2k}=\frac{1}{2}\left(1-\pi x\tan^{-1}\left(\pi x\right)\right) \]
\[ \sum_{k=1}^{\infty}\zeta(2k)x^{2k}=\frac{1}{2}\left(1-\pi x\tan^{-1}\left(\pi x\right)\right) \]
\begin{align*}
\sum_{k=1}^{\infty}\zeta(2k)x^{2k} & =\sum_{k=1}^{\infty}\sum_{j=1}^{\infty}\frac{1}{j^{2k}}x^{2k}\\
& =\sum_{j=1}^{\infty}\sum_{k=1}^{\infty}\left(\frac{x}{j}\right)^{2k}\\
& =\sum_{j=1}^{\infty}\sum_{k=1}^{\infty}\left(\frac{x}{j}\right)^{2k}\\
& =\sum_{j=1}^{\infty}\left(\frac{x}{j}\right)^{2}\frac{1}{1-\left(\frac{x}{j}\right)^{2}}\\
& =x\sum_{j=1}^{\infty}\frac{x}{j^{2}-x^{2}}\\
& =-\frac{x}{2}\frac{d}{dx}\sum_{j=1}^{\infty}\log\left(j^{2}-x^{2}\right)\\
& =-\frac{x}{2}\frac{d}{dx}\log\left(\prod_{j=1}^{\infty}\left(j^{2}-x^{2}\right)\right)\\
& =-\frac{x}{2}\frac{d}{dx}\log\left(\frac{1}{\pi x}\left(\prod_{m=1}^{\infty}m^{2}\right)\pi x\left(\prod_{j=1}^{\infty}\frac{j^{2}-x^{2}}{j^{2}}\right)\right)\\
& =-\frac{x}{2}\frac{d}{dx}\log\left(\frac{1}{\pi x}\left(\prod_{m=1}^{\infty}m^{2}\right)\sin\left(\pi x\right)\right)\\
& =-\frac{x}{2}\frac{d}{dx}\left(\log\sin\left(\pi x\right)-\log x+\log\left(\frac{1}{\pi}\left(\prod_{m=1}^{\infty}m^{2}\right)\right)\right)\\
& =-\frac{x}{2}\left(\pi\tan^{-1}\left(\pi x\right)-\frac{1}{x}\right)\\
& =\frac{1}{2}\left(1-\pi x\tan^{-1}\left(\pi x\right)\right)
\end{align*}
ページ情報
タイトル | 偶数ゼータの通常型母関数 |
URL | https://www.nomuramath.com/ih5f369k/ |
SNSボタン |
ζ(4k)の総和
\[
\sum_{k=1}^{\infty}\left(\zeta(4k)-1\right)=\frac{7}{8}-\frac{\pi}{4}\tanh^{-1}\pi
\]
フルヴィッツ・ゼータ関数の第2引数での微分とテーラー展開
\[
\frac{\partial^{n}}{\partial z^{n}}\zeta\left(s,z\right)=P\left(-s,n\right)\zeta\left(s+n,z\right)
\]
ゼータ関数の交代級数
\[
\sum_{k=1}^{\infty}\left(\zeta\left(2k\right)-\zeta\left(2k+1\right)\right)=\frac{1}{2}
\]
リーマン・ゼータ関数(フルヴィッツ・ゼータ関数)のローラン展開時のスティルチェス定数(一般化スティルチェス定数)
\[
\gamma_{k}=\lim_{n\rightarrow\infty}\left(\left(\sum_{j=1}^{n}\frac{\log^{k}j}{j}\right)-\frac{\log^{k+1}n}{k+1}\right)
\]