逆2乗の別表示
逆2乗の別表示
\[ \frac{1}{\left(k+1\right)^{2}}=-\int_{0}^{1}x^{k}\log xdx \]
\[ \frac{1}{\left(k+1\right)^{2}}=-\int_{0}^{1}x^{k}\log xdx \]
\begin{align*}
\frac{1}{(k+1)^{2}} & =\frac{1}{(k+1)}\int_{0}^{1}x^{k}dx\\
& =\frac{1}{(k+1)}\left(\left[x^{k+1}\log x\right]_{0}^{1}-\left(k+1\right)\int_{0}^{1}x^{k}\log xdx\right)\\
& =-\int_{0}^{1}x^{k}\log xdx
\end{align*}
ページ情報
タイトル | 逆2乗の別表示 |
URL | https://www.nomuramath.com/bjnx3ppm/ |
SNSボタン |
単位分数とエジプト式分数の定義
\[
\frac{1}{2},\frac{1}{3},\frac{1}{4}
\]
有理数全体の集合
\[
f\left(x\right)=\frac{1}{\left\lfloor x\right\rfloor +1-\left\{ x\right\} }
\]
巾関数の積分表現
\[
\frac{1}{z^{\alpha}}=\frac{1}{\Gamma\left(\alpha\right)}\int_{0}^{\infty}t^{\alpha-1}e^{-zt}dt
\]
エジプト式分数の個数
エジプト式分数は無数に存在する。