sinc関数のn乗広義積分
sinc関数の\(n\)乗広義積分
\(n\in\mathbb{N}\)とする。
\[ \int_{0}^{\infty}sinc^{n}(x)dx=\frac{\pi}{2^{n+1}(n-1)!}\sum_{k=0}^{n}C(n,k)(-1)^{k}(n-2k)^{n-1}\sgn(n-2k) \]
\(n\in\mathbb{N}\)とする。
\[ \int_{0}^{\infty}sinc^{n}(x)dx=\frac{\pi}{2^{n+1}(n-1)!}\sum_{k=0}^{n}C(n,k)(-1)^{k}(n-2k)^{n-1}\sgn(n-2k) \]
\begin{align*}
\int_{0}^{\infty}sinc^{n}(x)dx & =\int_{0}^{\infty}\frac{\sin^{n}x}{x^{n}}dx\\
& =\int_{0}^{\infty}\int_{0}^{\infty}\cdots\cdots\int_{0}^{\infty}\int_{0}^{\infty}\sin^{n}xe^{-(a_{1}+a_{2}+\cdots\cdots+a_{n})x}da_{1}da_{2}\cdots\cdots da_{n}dx\\
& =\int_{0}^{\infty}\int_{0}^{\infty}\cdots\cdots\int_{0}^{\infty}\int_{0}^{\infty}\sin^{n}xe^{-Ax}dxda_{1}da_{2}\cdots\cdots da_{n}\qquad,\qquad A=\sum_{k=0}^{n}a_{n}\\
& =\int_{0}^{\infty}\int_{0}^{\infty}\cdots\cdots\int_{0}^{\infty}\int_{0}^{\infty}\frac{\left(e^{ix}-e^{-ix}\right)^{n}}{(2i)^{n}}e^{-Ax}dxda_{1}da_{2}\cdots\cdots da_{n}\\
& =\int_{0}^{\infty}\int_{0}^{\infty}\cdots\cdots\int_{0}^{\infty}\int_{0}^{\infty}\frac{1}{(2i)^{n}}\sum_{k=0}^{n}C(n,k)(-1)^{n-k}e^{ikx}e^{-i(n-k)x}e^{-Ax}dxda_{1}da_{2}\cdots\cdots da_{n}\\
& =\int_{0}^{\infty}\int_{0}^{\infty}\cdots\cdots\int_{0}^{\infty}\int_{0}^{\infty}\frac{1}{(2i)^{n}}\sum_{k=0}^{n}C(n,k)(-1)^{n-k}e^{-(A-i(2k-n))x}dxda_{1}da_{2}\cdots\cdots da_{n}\\
& =\int_{0}^{\infty}\int_{0}^{\infty}\cdots\cdots\int_{0}^{\infty}\int_{0}^{\infty}\frac{1}{(2i)^{n}}\sum_{k=0}^{n}C(n,k)(-1)^{n-k}\frac{1}{A-i(2k-n)}da_{1}da_{2}\cdots\cdots da_{n}\\
& =\frac{(-1)^{n}}{(2i)^{n}}\sum_{k=0}^{n}C(n,k)(-1)^{n-k}\frac{\left(-i(2k-n)\right)^{n-1}}{(n-1)!}\left\{ \log(-i(2k-n))-H_{n-1}\right\} \\
& =\frac{(-1)^{n+1}}{2^{n}i(n-1)!}\sum_{k=0}^{n}C(n,k)(-1)^{k}(2k-n)^{n-1}\left\{ \log(-i(2k-n))-H_{n-1}\right\} \\
& =\frac{(-1)^{n+1}}{2^{n}i(n-1)!}\sum_{k=0}^{n}C(n,k)(-1)^{k}(2k-n)^{n-1}\log(-i(2k-n))\\
& =\frac{(-1)^{n+1}}{2^{n+1}i(n-1)!}\sum_{k=0}^{n}\left(C(n,k)(-1)^{k}(2k-n)^{n-1}\log(-i(2k-n))+C(n,k)(-1)^{n-k}(n-2k)^{n-1}\log(-i(n-2k))\right)\qquad,\qquad k\rightarrow n-k\\
& =\frac{-1}{2^{n+1}i(n-1)!}\sum_{k=0}^{n}C(n,k)(-1)^{k}(n-2k)^{n-1}\left\{ \log\left(-i(n-2k)\right)-\log\left(-i(2k-n)\right)\right\} \\
& =\frac{-1}{2^{n+1}i(n-1)!}\sum_{k=0}^{n}C(n,k)(-1)^{k}(n-2k)^{n-1}\left\{ \log\left(-i\sgn(n-2k)\right)-\log\left(i\sgn(n-2k)\right)\right\} \\
& =\frac{-1}{2^{n+1}i(n-1)!}\sum_{k=0}^{n}C(n,k)(-1)^{k}(n-2k)^{n-1}\left(-\frac{\pi}{2}i-\frac{\pi}{2}i\right)\sgn(n-2k)\\
& =\frac{\pi}{2^{n+1}(n-1)!}\sum_{k=0}^{n}C(n,k)(-1)^{k}(n-2k)^{n-1}\sgn(n-2k)
\end{align*}
ページ情報
| タイトル | sinc関数のn乗広義積分 |
| URL | https://www.nomuramath.com/d6vmjrm9/ |
| SNSボタン |
ブロック3角行列の行列式
\[
\det\left(\begin{array}{cccc}
A_{1,1} & O & \cdots & O\\
A_{1,2} & A_{2,2} & \ddots & O\\
\vdots & \ddots & \ddots & \vdots\\
A_{1,p} & A_{2,p} & \cdots & A_{p,p}
\end{array}\right)=\prod_{k=1}^{p}\det\left(A_{k,k}\right)
\]
2×2ブロック行列の逆行列
\[
\left(\begin{array}{cc}
A & B\\
O & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
A^{-1} & -A^{-1}BD^{-1}\\
O & D^{-1}
\end{array}\right)
\]
2×2ブロック行列の行列式
\[
\det\left(\begin{array}{cc}
A & O\\
C & D
\end{array}\right)=\det\left(A\right)\det\left(D\right)
\]
2×2ブロック対称分けの積の分割
\[
\left(\begin{array}{cc}
A & B\\
C & D
\end{array}\right)=\left(\begin{array}{cc}
I & O\\
CA^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
A & O\\
O & D-CA^{-1}B
\end{array}\right)\left(\begin{array}{cc}
I & A^{-1}B\\
O & I
\end{array}\right)
\]

