対数関数のn回積分
対数関数のn回積分
\[ \left(\log x\right)^{(-n)}=\left(\log x-H_{n}\right)\frac{x^{n}}{n!} \]
\[ \left(\log x\right)^{(-n)}=\left(\log x-H_{n}\right)\frac{x^{n}}{n!} \]
\(n=0\)のとき
明らかに成立。\(n=k\)のとき成立すると仮定する
\begin{align*} \left(\log x\right)^{(-(k+1))} & =\int\left(\log x-H_{k}\right)\frac{x^{k}}{k!}dx\\ & =\left(\log x-H_{k}\right)\frac{x^{k+1}}{(k+1)!}-\int\frac{1}{x}\frac{x^{k+1}}{(k+1)!}dx\\ & =\left(\log x-H_{k}\right)\frac{x^{k+1}}{(k+1)!}-\frac{x^{k+1}}{(k+1)(k+1)!}\\ & =\left(\log x-H_{k}-\frac{1}{k+1}\right)\frac{x^{k+1}}{(k+1)!}\\ & =\left(\log x-H_{k+1}\right)\frac{x^{k+1}}{(k+1)!} \end{align*} となるので\(n=k+1\)でも成立(*)
故に与式は成り立つ。ページ情報
タイトル | 対数関数のn回積分 |
URL | https://www.nomuramath.com/kgwgsfey/ |
SNSボタン |
順序写像かつ順序単射であることと順序埋め込み写像は同値
濃度2以上の密着位相は距離化不可能
$2\leq\left|X\right|$となる密着位相$\left(X,\left\{ \emptyset,X\right\} \right)$は距離化不可能である。
?[python3]スライスでシーケンスの一部を取り出す
"abcde"[1:3]
ヘヴィサイドの階段関数と絶対値・符号関数
\[
H_{a}\left(\left|c\right|x\right)=H_{a}\left(x\right)
\]