ゼータ関数とイータ関数の関係
ゼータ関数とイータ関数は以下の関係がある。
\[ \eta(s)=(1-2^{1-s})\zeta(s) \]
\[ \eta(s)=(1-2^{1-s})\zeta(s) \]
\begin{align*}
\eta(s) & =\sum_{k=1}^{^{\infty}}(-1)^{k+1}k^{-s}\\
& =\sum_{k=1}^{^{\infty}}(-1)^{2k+1}(2k)^{-s}+\sum_{k=1}^{^{\infty}}(-1)^{2k}(2k-1)^{-s}\\
& =-\sum_{k=1}^{^{\infty}}(2k)^{-s}+\sum_{k=1}^{^{\infty}}(2k-1)^{-s}\\
& =-\sum_{k=1}^{^{\infty}}(2k)^{-s}+\sum_{k=1}^{^{\infty}}k^{-s}-\sum_{k=1}^{^{\infty}}(2k)^{-s}\\
& =-2^{1-s}\sum_{k=1}^{^{\infty}}k^{-s}+\sum_{k=1}^{^{\infty}}k^{-s}\\
& =(1-2^{1-s})\zeta(s)
\end{align*}
ページ情報
| タイトル | ゼータ関数とイータ関数の関係 |
| URL | https://www.nomuramath.com/wsvsj63f/ |
| SNSボタン |
リーマン・ゼータ関数の解析接続による非負整数値
\[
\zeta\left(-n\right)=\left(-1\right)^{n}\frac{B_{n+1}}{n+1}
\]
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数のハンケル経路積分
\[
\zeta\left(s,\alpha\right)=-\frac{\Gamma\left(1-s\right)}{2\pi i}\int_{C}\frac{\left(-z\right)^{s-1}e^{-\alpha z}}{1-e^{-z}}dz
\]
ゼータ関数の絶対収束条件
ゼータ関数$\zeta\left(s\right)$は$\Re\left(s\right)>1$で絶対収束
リーマン・ゼータ関数(フルヴィッツ・ゼータ関数)のローラン展開時のスティルチェス定数(一般化スティルチェス定数)
\[
\gamma_{k}=\lim_{n\rightarrow\infty}\left(\left(\sum_{j=1}^{n}\frac{\log^{k}j}{j}\right)-\frac{\log^{k+1}n}{k+1}\right)
\]

