連続で出来る部分分数分解
\(n\in\mathbb{Z}\)のとき以下のように部分分数分解又は展開が出来る。
\[ \frac{1}{x(x+a)^{n}}=\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+1)^{k}}\right) \]
\[ \frac{1}{x(x+a)^{n}}=\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+1)^{k}}\right) \]
\[
\frac{1}{x(x+a)^{n}}=\frac{1}{a}\left(\frac{1}{x(x+a)^{n-1}}-\frac{1}{(x+a)^{n}}\right)
\]
これより、
\begin{align*} \frac{1}{x(x+a)^{n}} & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left\{ \frac{a^{k}}{x(x+a)^{k}}-\frac{a^{k-1}}{x(x+a)^{k-1}}\right\} \\ & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left(-\frac{a^{k-1}}{(x+a)^{k}}\right)\\ & =\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+a)^{k}}\right) \end{align*}
\begin{align*} \frac{1}{x(x+a)^{n}} & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left\{ \frac{a^{k}}{x(x+a)^{k}}-\frac{a^{k-1}}{x(x+a)^{k-1}}\right\} \\ & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left(-\frac{a^{k-1}}{(x+a)^{k}}\right)\\ & =\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+a)^{k}}\right) \end{align*}
ページ情報
| タイトル | 連続で出来る部分分数分解 |
| URL | https://www.nomuramath.com/w1ww4359/ |
| SNSボタン |
ブロック3角行列の行列式
\[
\det\left(\begin{array}{cccc}
A_{1,1} & O & \cdots & O\\
A_{1,2} & A_{2,2} & \ddots & O\\
\vdots & \ddots & \ddots & \vdots\\
A_{1,p} & A_{2,p} & \cdots & A_{p,p}
\end{array}\right)=\prod_{k=1}^{p}\det\left(A_{k,k}\right)
\]
2×2ブロック行列の逆行列
\[
\left(\begin{array}{cc}
A & B\\
O & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
A^{-1} & -A^{-1}BD^{-1}\\
O & D^{-1}
\end{array}\right)
\]
2×2ブロック行列の行列式
\[
\det\left(\begin{array}{cc}
A & O\\
C & D
\end{array}\right)=\det\left(A\right)\det\left(D\right)
\]
2×2ブロック対称分けの積の分割
\[
\left(\begin{array}{cc}
A & B\\
C & D
\end{array}\right)=\left(\begin{array}{cc}
I & O\\
CA^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
A & O\\
O & D-CA^{-1}B
\end{array}\right)\left(\begin{array}{cc}
I & A^{-1}B\\
O & I
\end{array}\right)
\]

