連続で出来る部分分数分解
\(n\in\mathbb{Z}\)のとき以下のように部分分数分解又は展開が出来る。
\[ \frac{1}{x(x+a)^{n}}=\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+1)^{k}}\right) \]
\[ \frac{1}{x(x+a)^{n}}=\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+1)^{k}}\right) \]
\[
\frac{1}{x(x+a)^{n}}=\frac{1}{a}\left(\frac{1}{x(x+a)^{n-1}}-\frac{1}{(x+a)^{n}}\right)
\]
これより、
\begin{align*} \frac{1}{x(x+a)^{n}} & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left\{ \frac{a^{k}}{x(x+a)^{k}}-\frac{a^{k-1}}{x(x+a)^{k-1}}\right\} \\ & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left(-\frac{a^{k-1}}{(x+a)^{k}}\right)\\ & =\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+a)^{k}}\right) \end{align*}
\begin{align*} \frac{1}{x(x+a)^{n}} & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left\{ \frac{a^{k}}{x(x+a)^{k}}-\frac{a^{k-1}}{x(x+a)^{k-1}}\right\} \\ & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left(-\frac{a^{k-1}}{(x+a)^{k}}\right)\\ & =\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+a)^{k}}\right) \end{align*}
ページ情報
タイトル | 連続で出来る部分分数分解 |
URL | https://www.nomuramath.com/w1ww4359/ |
SNSボタン |
コンウェイのチェーン表記の定義
\[
X\rightarrow\left(a+1\right)\rightarrow\left(b+1\right)=X\rightarrow\left\{ X\rightarrow a\rightarrow\left(b+1\right)\right\} \rightarrow b
\]
有界単調数列は収束する
弧状連結の定義
?[python3]スライスでシーケンスの一部を取り出す
"abcde"[1:3]