三角関数と双曲線関数の半角公式
三角関数の半角公式
(1)
\[ \sin^{2}\frac{x}{2}=\frac{1-\cos x}{2} \](2)
\[ \cos^{2}\frac{x}{2}=\frac{1+\cos x}{2} \](3)
\[ \tan^{2}\frac{x}{2}=\frac{1-\cos x}{1+\cos x} \](1)
2倍角の公式\[ \cos2\frac{x}{2}=1-2\sin^{2}\frac{x}{2} \] より、
\[ \sin^{2}\frac{x}{2}=\frac{1-\cos x}{2} \]
(2)
2倍角の公式\[ \cos2\frac{x}{2}=2\cos^{2}\frac{x}{2}-1 \] より、
\[ \cos^{2}\frac{x}{2}=\frac{1+\cos x}{2} \]
(3)
\begin{align*} \tan^{2}\frac{x}{2} & =\frac{\sin^{2}\frac{x}{2}}{\cos^{2}\frac{x}{2}}\\ & =\frac{1-\cos x}{1+\cos x} \end{align*}双曲線関数の半角公式
(1)
\[ \sinh^{2}\frac{x}{2}=\frac{\cosh x-1}{2} \](2)
\[ \cosh^{2}\frac{x}{2}=\frac{\cosh x+1}{2} \](3)
\[ \tanh^{2}\frac{x}{2}=\frac{\cosh x-1}{\cosh x+1} \](1)
\begin{align*} \sinh^{2}\frac{x}{2} & =-\sin^{2}\frac{ix}{2}\\ & =-\frac{1-\cos ix}{2}\\ & =\frac{\cosh x-1}{2} \end{align*}(2)
\begin{align*} \cosh^{2}\frac{x}{2} & =\cos^{2}\frac{ix}{2}\\ & =\frac{1+\cos ix}{2}\\ & =\frac{\cosh x+1}{2} \end{align*}(3)
\begin{align*} \tanh^{2}\frac{x}{2} & =\frac{\sinh^{2}\frac{x}{2}}{\cosh^{2}\frac{x}{2}}\\ & =\frac{\cosh x-1}{\cosh x+1} \end{align*}ページ情報
| タイトル | 三角関数と双曲線関数の半角公式 |
| URL | https://www.nomuramath.com/aeq4cukk/ |
| SNSボタン |
正弦と余弦のべき乗の積の積分の超幾何関数表示
\[
\int\sin^{\alpha}\left(x\right)\cos^{\beta}\left(x\right)dx=\frac{\cos^{\beta-1}}{\left(\cos^{2}\left(x\right)\right)^{\frac{\beta-1}{2}}}\frac{\sin^{\alpha+1}\left(x\right)}{\alpha+1}F\left(\frac{1-\beta}{2},\frac{\alpha+1}{2};\frac{\alpha+3}{2};\sin^{2}\left(x\right)\right)+C
\]
3角関数のべき乗の積分の超幾何関数表示
\[
\int\sin^{\alpha}\left(x\right)dx=\frac{\sin^{\alpha+1}\left(x\right)}{\alpha+1}F\left(\frac{1}{2},\frac{\alpha+1}{2};\frac{\alpha+3}{2};\sin^{2}\left(x\right)\right)+C
\]
逆3角関数と逆双曲線関数の主値と2乗のルート
\[
\sin^{\bullet}\sin z=z\Rightarrow\sqrt{\cos^{2}z}=\cos z
\]
3角関数と逆3角関数・双曲線関数と逆双曲線関数の関係
\[
\sin^{\bullet}\sin z=z\Leftrightarrow\cos^{\bullet}\cos\left(\frac{\pi}{2}-z\right)=\frac{\pi}{2}-z
\]

