円に内接する4角形の余弦
円に内接する4角形の余弦
円に内接する4角形\(ABCD\)があるとき、余弦\(\cos A\)は
\[ \cos A=\frac{\left|DA\right|^{2}+\left|AB\right|^{2}-\left|BC\right|^{2}-\left|CD\right|^{2}}{2\left(\left|DA\right|\left|AB\right|+\left|BC\right|\left|CD\right|\right)} \] となる。

円に内接する4角形\(ABCD\)があるとき、余弦\(\cos A\)は
\[ \cos A=\frac{\left|DA\right|^{2}+\left|AB\right|^{2}-\left|BC\right|^{2}-\left|CD\right|^{2}}{2\left(\left|DA\right|\left|AB\right|+\left|BC\right|\left|CD\right|\right)} \] となる。
3角形\(DAB\)についての余弦定理より、
\[ \left|BD\right|^{2}=\left|DA\right|^{2}+\left|AB\right|^{2}-2\left|DA\right|\left|AB\right|\cos A \] となり、4角形\(ABCD\)は円に内接しているので\(A+C=\pi\)となるので3角形\(BCD\)についての余弦定理より、
\begin{align*} \left|DB\right|^{2} & =\left|BC\right|^{2}+\left|CD\right|^{2}-2\left|BC\right|\left|CD\right|\cos C\\ & =\left|BC\right|^{2}+\left|CD\right|^{2}-2\left|BC\right|\left|CD\right|\cos\left(\pi-A\right)\cmt{\because A+C=\pi}\\ & =\left|BC\right|^{2}+\left|CD\right|^{2}+2\left|BC\right|\left|CD\right|\cos A \end{align*} となる。
これより、
\[ \left|DA\right|^{2}+\left|AB\right|^{2}-2\left|DA\right|\left|AB\right|\cos A=\left|BC\right|^{2}+\left|CD\right|^{2}+2\left|BC\right|\left|CD\right|\cos C \] となるので移項をすると、
\begin{align*} \left|DA\right|^{2}+\left|AB\right|^{2}-\left|BC\right|^{2}-\left|CD\right|^{2} & =2\left|DA\right|\left|AB\right|\cos A+2\left|BC\right|\left|CD\right|\cos C\\ & =2\cos A\left(\left|DA\right|\left|AB\right|+\left|BC\right|\left|CD\right|\right) \end{align*} となるので、
\[ \cos A=\frac{\left|DA\right|^{2}+\left|AB\right|^{2}-\left|BC\right|^{2}-\left|CD\right|^{2}}{2\left(\left|DA\right|\left|AB\right|+\left|BC\right|\left|CD\right|\right)} \] となる。
従って題意は成り立つ。
\[ \left|BD\right|^{2}=\left|DA\right|^{2}+\left|AB\right|^{2}-2\left|DA\right|\left|AB\right|\cos A \] となり、4角形\(ABCD\)は円に内接しているので\(A+C=\pi\)となるので3角形\(BCD\)についての余弦定理より、
\begin{align*} \left|DB\right|^{2} & =\left|BC\right|^{2}+\left|CD\right|^{2}-2\left|BC\right|\left|CD\right|\cos C\\ & =\left|BC\right|^{2}+\left|CD\right|^{2}-2\left|BC\right|\left|CD\right|\cos\left(\pi-A\right)\cmt{\because A+C=\pi}\\ & =\left|BC\right|^{2}+\left|CD\right|^{2}+2\left|BC\right|\left|CD\right|\cos A \end{align*} となる。
これより、
\[ \left|DA\right|^{2}+\left|AB\right|^{2}-2\left|DA\right|\left|AB\right|\cos A=\left|BC\right|^{2}+\left|CD\right|^{2}+2\left|BC\right|\left|CD\right|\cos C \] となるので移項をすると、
\begin{align*} \left|DA\right|^{2}+\left|AB\right|^{2}-\left|BC\right|^{2}-\left|CD\right|^{2} & =2\left|DA\right|\left|AB\right|\cos A+2\left|BC\right|\left|CD\right|\cos C\\ & =2\cos A\left(\left|DA\right|\left|AB\right|+\left|BC\right|\left|CD\right|\right) \end{align*} となるので、
\[ \cos A=\frac{\left|DA\right|^{2}+\left|AB\right|^{2}-\left|BC\right|^{2}-\left|CD\right|^{2}}{2\left(\left|DA\right|\left|AB\right|+\left|BC\right|\left|CD\right|\right)} \] となる。
従って題意は成り立つ。
ページ情報
タイトル | 円に内接する4角形の余弦 |
URL | https://www.nomuramath.com/o4fg19q9/ |
SNSボタン |
4角形の対辺同士の内積
\[
\overrightarrow{AB}\cdot\overrightarrow{CD}=\frac{1}{2}\left(b^{2}+d^{2}-p^{2}-q^{2}\right)
\]
3点を通る円
\[
\det\left(\begin{array}{cccc}
x^{2}+y^{2} & x & y & 1\\
x_{1}^{2}+y_{1}^{2} & x_{1} & y_{1} & 1\\
x_{2}^{2}+y_{2}^{2} & x_{2} & y_{2} & 1\\
x_{3}^{2}+y_{3}^{2} & x_{3} & y_{3} & 1
\end{array}\right)=0
\]
重心・垂心・外心の関係
\[
\boldsymbol{H}+2\boldsymbol{J}=3\boldsymbol{G}
\]
3角形の成立条件
\[
\text{3角形の3辺の長さが}a,b,c\Leftrightarrow\left|b-c\right|<a<b+c
\]