リーマン・ゼータ関数とディリクレ・イータ関数の定義
(1)リーマン・ゼータ関数
リーマン・ゼータ関数は以下で定義される。\[ \zeta(s)=\sum_{k=1}^{\infty}\frac{1}{k^{s}} \]
(2)ディリクレ・イータ関数
ディリクレ・イータ関数は以下で定義される。\[ \eta(s)=\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k^{s}} \]
ページ情報
| タイトル | リーマン・ゼータ関数とディリクレ・イータ関数の定義 |
| URL | https://www.nomuramath.com/zomisy5e/ |
| SNSボタン |
リーマンゼータ関数とガンマ関数の関係
\[
\zeta(s)=\pi^{s-1}2^{s}\sin\frac{s\pi}{2}\Gamma\left(1-s\right)\zeta(1-s)
\]
フルヴィッツ・ゼータ関数の乗法定理
\[
n^{s}\zeta\left(s,nz\right)=\sum_{k=0}^{n-1}\zeta\left(s,z+\frac{k}{n}\right)
\]
リーマン・ゼータ関数を含む総和
\[
\sum_{k=2}^{\infty}\frac{\zeta\left(k\right)-1}{k}=1-\gamma
\]
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の関係
\[
\zeta\left(s,1\right)=\zeta\left(s\right)
\]

