フルヴィッツのゼータ関数の定義
フルヴィッツのゼータ関数の定義
\(1<\Re\left(s\right)\;\land\;a\notin\mathbb{Z}_{\;0}^{-}\)とする。
\[ \zeta\left(s,\alpha\right)=\sum_{k=0}^{\infty}\frac{1}{\left(\alpha+k\right)^{s}} \]
\(1<\Re\left(s\right)\;\land\;a\notin\mathbb{Z}_{\;0}^{-}\)とする。
\[ \zeta\left(s,\alpha\right)=\sum_{k=0}^{\infty}\frac{1}{\left(\alpha+k\right)^{s}} \]
ページ情報
タイトル | フルヴィッツのゼータ関数の定義 |
URL | https://www.nomuramath.com/xqwiq65z/ |
SNSボタン |
フルヴィッツ・ゼータ関数の乗法定理
\[
n^{s}\zeta\left(s,nz\right)=\sum_{k=0}^{n-1}\zeta\left(s,z+\frac{k}{n}\right)
\]
偶数ゼータ・奇数ゼータ・ゼータの総和
\[
\sum_{k=2}^{\infty}\left(\zeta\left(k\right)-1\right)=1
\]
ζ(4k)の総和
\[
\sum_{k=1}^{\infty}\left(\zeta(4k)-1\right)=\frac{7}{8}-\frac{\pi}{4}\tanh^{-1}\pi
\]
すべての自然数の積(解析接続あり)
\[
\prod_{k=1}^{\infty}k=\sqrt{2\pi}
\]