2項係数の微分
2項係数の微分
(1)
\begin{align*} \frac{d}{dx}C(x,y) & =C(x,y)\left(\psi(1+x)-\psi(1+x-y)\right)\\ & =C(x,y)\left(H_{x}-H_{x-y}\right) \end{align*}(2)
\begin{align*} \frac{d}{dy}C(x,y) & =C(x,y)\left\{ \psi(1+x-y)-\psi(1+y)\right\} \\ & =C(x,y)\left\{ H_{x-y}-H_{y}\right\} \end{align*}(1)
\begin{align*} \frac{d}{dx}C(x,y) & =\frac{1}{y!}\frac{d}{dx}P(x,y)\\ & =\frac{1}{y!}P(x,y)\left(\psi(1+x)-\psi(1+x-y)\right)\\ & =C(x,y)\left(\psi(1+x)-\psi(1+x-y)\right)\\ & =C(x,y)\left(H_{x}-H_{x-y}\right) \end{align*}(2)
\begin{align*} \frac{d}{dy}C(x,y) & =\frac{1}{y!}\frac{d}{dy}P(x,y)+P(x,y)\frac{d}{dy}\frac{1}{\Gamma(y+1)}\\ & =\frac{1}{y!}P(x,y)\psi(1+x-y)+P(x,y)\frac{-\Gamma(y+1)\psi(y+1)}{\Gamma^{2}(y+1)}\\ & =C(x,y)\psi(1+x-y)-C(x,y)\psi(y+1)\\ & =C(x,y)\left\{ \psi(1+x-y)-\psi(1+y)\right\} \\ & =C(x,y)\left\{ H_{x-y}-H_{y}\right\} \end{align*}ページ情報
| タイトル | 2項係数の微分 |
| URL | https://www.nomuramath.com/xqn5ejgc/ |
| SNSボタン |
パスカルの法則の応用
\[
C\left(x+n,y+n\right)=C\left(x,y+n\right)+\sum_{k=0}^{n-1}C\left(x+k,y+n-1\right)
\]
ディクソンの等式
\[
\sum_{k=-a}^{a}(-1)^{k}C(a+b,a+k)C(b+c,b+k)C(c+a,c+k)=\frac{(a+b+c)!}{a!b!c!}
\]
2項係数の逆数の差分
\[
C^{-1}(k+j+1,j+1)=\frac{j+1}{j}\left(C^{-1}(k+j,j)-C^{-1}(k+j+1,j)\right)
\]
2項係数を含む総和
\[
\sum_{k=0}^{n}\frac{\left(-1\right)^{k}C\left(n,k\right)}{m+k}=\frac{1}{mC\left(m+n,m\right)}
\]

