空集合は任意の集合の部分集合
空集合は任意の集合の部分集合
任意の集合\(A\)に対し\(\emptyset\subseteq A\)が成り立つ。
任意の集合\(A\)に対し\(\emptyset\subseteq A\)が成り立つ。
\(\emptyset\subseteq\emptyset\)や\(A\subseteq A\)も常に成り立つ。
また任意の集合\(A\)に対し、\(\emptyset\subseteq A\)であるが、\(\emptyset\in A\)ではない。
-
\(A=\left\{ a\right\} \)のとき、\(a\in A\)であるが\(\left\{ a\right\} \in A\)ではない。また\(\left\{ a\right\} \subseteq A\)であるが、\(a\subseteq A\)ではない。また任意の集合\(A\)に対し、\(\emptyset\subseteq A\)であるが、\(\emptyset\in A\)ではない。
任意の\(x\in\emptyset\)は常に偽なので、\(\emptyset\subseteq A\Leftrightarrow\forall x\left(x\in\emptyset\rightarrow x\in A\right)\)は真になる。
故に題意は成り立つ。
故に題意は成り立つ。
ページ情報
| タイトル | 空集合は任意の集合の部分集合 |
| URL | https://www.nomuramath.com/xiaki13l/ |
| SNSボタン |
ブロック行列と色々なブロック行列の定義
ケーリー・ハミルトンの定理
\[
p_{A}\left(A\right)=O
\]
正方行列は3角行列と相似
エルミート行列(対称行列)と反エルミート行列(反対称行列)に分解
\[
A=S+T
\]

