互いに素な集合と対角集合の関係
互いに素な集合と対角集合の関係
集合\(X\)の部分集合\(A,B\subseteq X\)に対し、以下が成り立つ。
\[ A\cap B=\emptyset\Leftrightarrow\left(A\times B\right)\cap\Delta_{X}=\emptyset \]
集合\(X\)の部分集合\(A,B\subseteq X\)に対し、以下が成り立つ。
\[ A\cap B=\emptyset\Leftrightarrow\left(A\times B\right)\cap\Delta_{X}=\emptyset \]
-
\(\Delta_{X}\)は\(X\)の対角集合\(\Rightarrow\)
\(A\cap B=\emptyset\)のとき、\begin{align*} \left(A\times B\right)\cap\Delta_{X} & =\left(A\times B\right)\cap\left\{ \left(x,y\right)\in X\times X;x=y\right\} \\ & \subseteq\left\{ \left(x,y\right)\in A\times B;x\ne y\right\} \cap\left\{ \left(x,y\right)\in X\times X;x=y\right\} \\ & =\emptyset \end{align*} となるので、\(\left(A\times B\right)\cap\Delta_{x}=\emptyset\)となる。
従って\(\Rightarrow\)が成り立つ。
\(\Leftarrow\)
対偶で示す。\(A\cap B\ne\emptyset\)のとき、\(\left(A\times B\right)\cap\Delta_{X}\ne\emptyset\)を示せばいい。
\(A\cap B\ne\emptyset\)なのである元\(a\in X\)が存在し\(a\in A\land a\in B\)となる。
このとき、\(\left(a,a\right)\in A\times B\)となり、対角集合の定義より、\(\left(a,a\right)\in\Delta_{X}\)なので、\(\left(a,a\right)\in\left(A\times B\right)\cap\Delta_{X}\ne\emptyset\)となる。
故に対偶が示されたので\(\Leftarrow\)が成り立つ。
-
これより\(\Rightarrow\)と\(\Leftarrow\)が成り立つので\(\Leftrightarrow\)が成り立つ。ページ情報
| タイトル | 互いに素な集合と対角集合の関係 |
| URL | https://www.nomuramath.com/xi8h5cg6/ |
| SNSボタン |
べき等行列の性質
べき等行列はユニタリ行列で対角化が可能である。
べき零行列の性質
べき零行列$N$は正則ではない。
同次連立1次方程式の定義と性質
\[
A\boldsymbol{x}=\boldsymbol{0}
\]
連立1次方程式と拡大係数行列の定義と性質
\[
\left(A,\boldsymbol{b}\right)=\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1n} & b_{1}\\
a_{21} & a_{22} & \cdots & a_{2n} & b_{2}\\
\vdots & \vdots & \ddots & \vdots & \vdots\\
a_{m1} & a_{m2} & \cdots & a_{mn} & b_{m}
\end{array}\right)
\]

