完備リーマンゼータ関数の関数等式
完備リーマンゼータ関数
\[ \xi(s)=\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) \]
\[ \xi(s)=\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) \]
完備リーマンゼータ関数の関数等式
\[ \xi(s)=\xi(1-s) \]
\[ \xi(s)=\xi(1-s) \]
リーマンゼータの関数等式
\[ \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s)=\pi^{-\frac{1-s}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s) \] より明らかに成り立つ。
\[ \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s)=\pi^{-\frac{1-s}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s) \] より明らかに成り立つ。
ページ情報
| タイトル | 完備リーマンゼータ関数の関数等式 |
| URL | https://www.nomuramath.com/x2s85a76/ |
| SNSボタン |
ゼータ関数の絶対収束条件
ゼータ関数$\zeta\left(s\right)$は$\Re\left(s\right)>1$で絶対収束
リーマン・ゼータ関数のローラン展開
\[
\zeta\left(s\right)=\frac{1}{s-1}-\frac{1}{2}-s\int_{1}^{n}\frac{t-\left\lfloor t\right\rfloor -\frac{1}{2}}{t^{s+1}}dt
\]
すべての自然数の積(解析接続あり)
\[
\prod_{k=1}^{\infty}k=\sqrt{2\pi}
\]
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数のハンケル経路積分
\[
\zeta\left(s,\alpha\right)=-\frac{\Gamma\left(1-s\right)}{2\pi i}\int_{C}\frac{\left(-z\right)^{s-1}e^{-\alpha z}}{1-e^{-z}}dz
\]

