包含関係は半順序関係
包含関係は半順序関係
包含関係は半順序関係(反射律・反対称律・推移律)を満たす。
包含関係は半順序関係(反射律・反対称律・推移律)を満たす。
\(A,B,C\)を集合とする。
反射律
\(\forall x\left(x\in A\rightarrow x\in A\right)\Rightarrow A\subseteq A\)なので\(A\subseteq A\)となり反射律を満たす。反対称律
\(A=B\Leftrightarrow A\subseteq B\land B\subseteq A\)なので\(A\subseteq B\land B\subseteq A\Rightarrow A=B\)となり、反対称律を満たす。推移律
\begin{align*} A\subseteq B\land B\subseteq C & \Leftrightarrow\forall x\left(x\in A\rightarrow x\in B\right)\land\forall x\left(x\in B\rightarrow x\in C\right)\\ & \Leftrightarrow\forall x\left(x\in A\rightarrow x\in B\right)\land\left(x\in B\rightarrow x\in C\right)\\ & \Leftrightarrow\forall x\left\{ \left(\lnot x\in A\lor x\in B\right)\land\left(\lnot x\in B\lor x\in C\right)\right\} \\ & \Rightarrow\forall x\left\{ \lnot x\in A\lor x\in B\lor\lnot x\in B\lor x\in C\right\} \\ & \Leftrightarrow\forall x\left\{ \lnot x\in A\lor x\in C\right\} \\ & \Rightarrow\forall x\left(x\in A\rightarrow x\in C\right)\\ & \Leftrightarrow A\subseteq C \end{align*} となるので\(A\subseteq B\land B\subseteq C\Rightarrow A\subseteq C\)より、推移律を満たす。-
これらより、反射律・反対称律・推移律を満たすので半順序関係を満たす。ページ情報
タイトル | 包含関係は半順序関係 |
URL | https://www.nomuramath.com/v6yqewcp/ |
SNSボタン |
余弦積分の極限
\[
\lim_{x\rightarrow\pm0}\left\{ \Ci\left(\alpha x\right)-\Ci\left(x\right)\right\} =\begin{cases}
\Log\alpha & x\rightarrow+0\\
\Log\left(-\alpha\right)-\pi i & x\rightarrow-0
\end{cases}
\]
(*)チェビシェフ多項式の超幾何表示
\[
T_{n}(x)=F\left(-n,n;\frac{1}{2};\frac{1-x}{2}\right)
\]
項別積分と項別微分
\[
\sum_{k=1}^{\infty}\int_{a}^{b}f_{k}\left(x\right)dx=\int_{a}^{b}\sum_{k=1}^{\infty}f_{k}\left(x\right)dx
\]
(*)ベルヌーイ多項式の微分・積分
\[
B_{n}^{\left(k\right)}\left(x\right)=P\left(n,k\right)B_{n-k}\left(x\right)
\]