log₂3とlog₃5の大小比較
log₂3とlog₃5の大小比較
\[ \log_{2}3\lesseqgtr\log_{3}5 \]
(0)
\begin{align*} \log_{2}3-\log_{3}5 & =\log_{8}27-\log_{9}25\\ & >\log_{9}27-\log_{9}25\\ & >0 \end{align*}
これより、
\[ \log_{3}5<\log_{2}3 \]
(0)-2
\begin{align*} \log_{2}3-\log_{3}5 & =\frac{1}{2}\left(\log_{2}3^{2}-\log_{3}5^{2}\right)\\ & =\frac{1}{2}\left(\log_{2}9-\log_{3}25\right)\\ & >\frac{1}{2}\left(\log_{2}8-\log_{3}27\right)\\ & =\frac{1}{2}\left(\log_{2}2^{3}-\log_{3}3^{3}\right)\\ & =0 \end{align*}
これより、
\[ \log_{2}3>\log_{3}5 \]
ページ情報
タイトル | log₂3とlog₃5の大小比較 |
URL | https://www.nomuramath.com/tmtjt0uw/ |
SNSボタン |
対数のルート積分
\[
\int\log^{\frac{1}{2}}xdx=x\log^{\frac{1}{2}}x-\frac{\sqrt{\pi}}{2}erfi\left(\log^{\frac{1}{2}}x\right)+C
\]
x²-x+1で割った余り
$x^{1000}$を$x^{2}-x+1$で割った余り
ルート引くルートの問題
$\sqrt{2\sqrt{3}+2}-\sqrt{\sqrt{3}-\sqrt{2}}$を簡単にせよ
文字を消去すると4次方程式
\[
\begin{cases}
x^{2}-2y=4\\
y^{2}-2x=4
\end{cases}
\]