否定同値の否定同値は同値の同値
否定同値の否定同値は同値の同値
\(P,Q,R\)は命題変数とする。
\[ P\nleftrightarrow Q\nleftrightarrow R\Leftrightarrow P\leftrightarrow Q\leftrightarrow R \]
\(P,Q,R\)は命題変数とする。
\[ P\nleftrightarrow Q\nleftrightarrow R\Leftrightarrow P\leftrightarrow Q\leftrightarrow R \]
\begin{align*}
P\nleftrightarrow Q\nleftrightarrow R & \Leftrightarrow P\nleftrightarrow\lnot\left(Q\leftrightarrow R\right)\\
& \Leftrightarrow P\leftrightarrow\left(Q\leftrightarrow R\right)\\
& \Leftrightarrow P\leftrightarrow Q\leftrightarrow R
\end{align*}
ページ情報
タイトル | 否定同値の否定同値は同値の同値 |
URL | https://www.nomuramath.com/t0jakxlm/ |
SNSボタン |
全称命題と存在命題の否定と部分否定・全否定
\[
\lnot\forall x,P\left(x\right)\Leftrightarrow\exists x,\lnot P\left(x\right)
\]
量化子(全称命題・存在命題)の順序変更
\[
\exists x\forall y,P\left(x,y\right)\Rightarrow\forall y\exists x,P\left(x,y\right)
\]
LK推論規則での包含関係
\[
\left(P\rightarrow Q\right)\land\left(R\rightarrow S\right)\Rightarrow\left(P\lor R\right)\rightarrow\left(Q\land S\right)
\]
論理演算の基本
\[
P\lor\left(P\land Q\right)\Leftrightarrow P
\]