終域が2つの写像全体の集合
終域が2つの写像全体の集合
集合\(X\)に対し、\(X\)から\(\left\{ 0,1\right\} \)への写像全体の集合を\(\left\{ 0,1\right\} ^{X}\)で表す。
このとき任意の集合\(X\)に対して\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
集合\(X\)に対し、\(X\)から\(\left\{ 0,1\right\} \)への写像全体の集合を\(\left\{ 0,1\right\} ^{X}\)で表す。
このとき任意の集合\(X\)に対して\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
任意の\(A\in2^{X}\)に対し写像を指示関数
\[ 1_{A}:X\rightarrow\left\{ 0,1\right\} ,x\mapsto\begin{cases} 1 & x\in A\\ 0 & x\notin A \end{cases} \] で定める。
このとき写像
\[ f:2^{X}\rightarrow\left\{ 0,1\right\} ^{X},A\mapsto1_{A} \] は全単射になるので、\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
\[ 1_{A}:X\rightarrow\left\{ 0,1\right\} ,x\mapsto\begin{cases} 1 & x\in A\\ 0 & x\notin A \end{cases} \] で定める。
このとき写像
\[ f:2^{X}\rightarrow\left\{ 0,1\right\} ^{X},A\mapsto1_{A} \] は全単射になるので、\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
ページ情報
タイトル | 終域が2つの写像全体の集合 |
URL | https://www.nomuramath.com/q1zfp3zc/ |
SNSボタン |
剰余の剰余
\[
\mod\left(\mod\left(\alpha,n\beta\right),\beta\right)=\mod\left(\alpha,\beta\right)
\]
銅像をいつ倒す?
銅像を90度左右に回転させるだけで全員が部屋に入ったことをどうすれば確認ができるか?
オプション価格の2項1期間モデル
\[
C\left(0\right)=\frac{1}{r}\left(p_{u}C_{u}+p_{d}C_{d}\right)
\]
母関数の逆演算
\[
a_{n}=\frac{1}{n!}\left[\frac{d^{n}}{dz^{n}}G\left(z\right)\right]_{z=0}
\]