無限集合は可算無限部分集合をもつ
無限集合は可算無限部分集合をもつ
無限集合は可算無限部分集合をもつ。
ただし選択公理を認めるとする。
無限集合は可算無限部分集合をもつ。
ただし選択公理を認めるとする。
無限集合を\(A\)とする。
このとき選択公理より\(a_{n}\)を\(a_{n}\in A\setminus\bigcup_{k=1}^{n-1}\left\{ a_{k}\right\} \)と選ぶと、\(\left\{ a_{1},a_{2},\cdots\right\} =\left\{ a_{n}\right\} _{n\in\mathbb{N}}\subseteq A\)は可算無限部分集合となる。
故に題意は成り立つ。
このとき選択公理より\(a_{n}\)を\(a_{n}\in A\setminus\bigcup_{k=1}^{n-1}\left\{ a_{k}\right\} \)と選ぶと、\(\left\{ a_{1},a_{2},\cdots\right\} =\left\{ a_{n}\right\} _{n\in\mathbb{N}}\subseteq A\)は可算無限部分集合となる。
故に題意は成り立つ。
ページ情報
タイトル | 無限集合は可算無限部分集合をもつ |
URL | https://www.nomuramath.com/pyftcwbu/ |
SNSボタン |
点灯パズル
全てのマスのライトを付けるにはどうすればいいでしょうか?
病気の感染と陽性問題
陽性と判定を受けた人が実際に感染している確率はいくらでしょうか?
オプション取引の解説
ハイパー調和数の定義
\[
H_{n}^{\left(r\right)}:=\begin{cases}
\frac{1}{n} & r=0\\
\sum_{k=1}^{n}H_{k}^{\left(r-1\right)} & r\in\mathbb{N}
\end{cases}
\]