無限集合は可算無限部分集合をもつ
無限集合は可算無限部分集合をもつ
無限集合は可算無限部分集合をもつ。
ただし選択公理を認めるとする。
無限集合は可算無限部分集合をもつ。
ただし選択公理を認めるとする。
無限集合を\(A\)とする。
このとき選択公理より\(a_{n}\)を\(a_{n}\in A\setminus\bigcup_{k=1}^{n-1}\left\{ a_{k}\right\} \)と選ぶと、\(\left\{ a_{1},a_{2},\cdots\right\} =\left\{ a_{n}\right\} _{n\in\mathbb{N}}\subseteq A\)は可算無限部分集合となる。
故に題意は成り立つ。
このとき選択公理より\(a_{n}\)を\(a_{n}\in A\setminus\bigcup_{k=1}^{n-1}\left\{ a_{k}\right\} \)と選ぶと、\(\left\{ a_{1},a_{2},\cdots\right\} =\left\{ a_{n}\right\} _{n\in\mathbb{N}}\subseteq A\)は可算無限部分集合となる。
故に題意は成り立つ。
ページ情報
| タイトル | 無限集合は可算無限部分集合をもつ |
| URL | https://www.nomuramath.com/pyftcwbu/ |
| SNSボタン |
ブロック対角行列の固有多項式と固有値
\[
p_{A}\left(\lambda\right)=\prod_{k\in\left\{ 1,2,\cdots,r\right\} }p_{A_{k}}\left(\lambda\right)
\]
ブロック対角行列の逆行列
\[
\left(\begin{array}{cccc}
A_{1,1} & O & \cdots & O\\
O & A_{2,2} & \ddots & O\\
\vdots & \ddots & \ddots & \vdots\\
O & O & \cdots & A_{p,p}
\end{array}\right)^{-1}=\left(\begin{array}{cccc}
A_{1,1}^{-1} & O & \cdots & O\\
O & A_{2,2}^{-1} & \ddots & O\\
\vdots & \ddots & \ddots & \vdots\\
O & O & \cdots & A_{p,p}^{-1}
\end{array}\right)
\]
対称ブロック分けのトーレス
\[
\tr\left(\begin{array}{cccc}
A_{1,1} & A_{1,2} & \cdots & A_{1,p}\\
A_{2,1} & A_{2,2} & \ddots & A_{2,p}\\
\vdots & \ddots & \ddots & \vdots\\
A_{p,1} & A_{p,2} & \cdots & A_{p,p}
\end{array}\right)=\sum_{k=1}^{p}\tr\left(A_{k,k}\right)
\]
ブロック対角行列の和・積・べき乗
\[
\left(\begin{array}{cccc}
A_{11} & O & \cdots & O\\
O & A_{22} & \ddots & O\\
\vdots & \ddots & \ddots & \vdots\\
O & O & \cdots & A_{pp}
\end{array}\right)^{k}=\left(\begin{array}{cccc}
A_{11}^{k} & O & \cdots & O\\
O & A_{22}^{k} & \ddots & O\\
\vdots & \ddots & \ddots & \vdots\\
O & O & \cdots & A_{pp}^{k}
\end{array}\right)
\]

