簡単な関数を上昇階乗とべき乗を使って表す
簡単な関数を上昇階乗とべき乗を使って表す
次の関数は上昇階乗とべき乗を使って次のように表される。
\(k,n\in\mathbb{N}_{0}\)とする。
次の関数は上昇階乗とべき乗を使って次のように表される。
\(k,n\in\mathbb{N}_{0}\)とする。
(1)
\[ ak+b=b\frac{Q\left(\frac{b}{a}+1,k\right)}{Q\left(\frac{b}{a},k\right)} \](2)
\[ \left(a-k\right)!=\frac{a!}{Q\left(-a,k\right)}\left(-1\right)^{k} \](3)
\[ \left(nk+a\right)!=n^{nk}a!\prod_{j=0}^{n-1}Q\left(\frac{a+1+j}{n},k\right) \](4)
\[ \left(nk+a\right)!_{n}=n^{k}a!_{n}Q\left(\frac{a}{n}+1,k\right) \](1)
\begin{align*} ak+b & =a\left(k+\frac{b}{a}\right)\\ & =a\frac{\left(k+\frac{b}{a}\right)!}{\left(k+\frac{b}{a}-1\right)!}\\ & =a\frac{\left(\frac{b}{a}\right)!Q\left(\frac{b}{a}+1,k\right)}{\left(\frac{b}{a}-1\right)!Q\left(\frac{b}{a},k\right)}\\ & =b\frac{Q\left(\frac{b}{a}+1,k\right)}{Q\left(\frac{b}{a},k\right)} \end{align*}(2)
\begin{align*} \left(a-k\right)! & =\frac{\left(a-k\right)!Q\left(a-k+1,k\right)}{Q\left(a-k+1,k\right)}\\ & =\frac{a!}{Q\left(a-k+1,k\right)}\\ & =\frac{a!}{P\left(a,k\right)}\\ & =\frac{a!}{Q\left(-a,k\right)}\left(-1\right)^{k} \end{align*}(3)
\begin{align*} \left(nk+a\right)! & =\Gamma\left(nk+a+1\right)\\ & =\Gamma\left(n\left(k+\frac{a+1}{n}\right)\right)\\ & =\frac{n^{nk+a+1-\frac{1}{2}}}{\left(2\pi\right)^{\frac{n-1}{2}}}\prod_{j=0}^{n-1}\Gamma\left(k+\frac{a+1}{n}+\frac{j}{n}\right)\\ & =\frac{n^{nk+a+\frac{1}{2}}}{\left(2\pi\right)^{\frac{n-1}{2}}}\prod_{j=0}^{n-1}\Gamma\left(\frac{a+1+j}{n}\right)\frac{\Gamma\left(k+\frac{a+1+j}{n}\right)}{\Gamma\left(\frac{a+1+j}{n}\right)}\\ & =\frac{n^{nk+a+\frac{1}{2}}}{\left(2\pi\right)^{\frac{n-1}{2}}}\prod_{j=0}^{n-1}\Gamma\left(\frac{a+1+j}{n}\right)Q\left(\frac{a+1+j}{n},k\right)\\ & =n^{nk}\frac{n^{a+1-\frac{1}{2}}}{\left(2\pi\right)^{\frac{n-1}{2}}}\prod_{j=0}^{n-1}\Gamma\left(\frac{a+1}{n}+\frac{j}{n}\right)Q\left(\frac{a+1+j}{n},k\right)\\ & =n^{nk}\Gamma\left(a+1\right)\prod_{j=0}^{n-1}Q\left(\frac{a+1+j}{n},k\right)\\ & =n^{nk}a!\prod_{j=0}^{n-1}Q\left(\frac{a+1+j}{n},k\right) \end{align*}(3)-2
\begin{align*} \left(nk+a\right)! & =\prod_{j=0}^{n-1}\left(nk+a-j\right)!_{n}\\ & =\prod_{j=0}^{n-1}\left(a-j\right)!_{n}\prod_{l=1}^{k}\left(nl+a-j\right)\\ & =a!\prod_{j=0}^{n-1}\prod_{l=1}^{k}n\left(l+\frac{a-j}{n}\right)\\ & =n^{nk}a!\prod_{j=0}^{n-1}\prod_{l=1}^{k}\left(l+\frac{a-j}{n}\right)\\ & =n^{nk}a!\prod_{j=0}^{n-1}Q\left(1+\frac{a-j}{n},k\right)\\ & =n^{nk}a!\prod_{j=0}^{n-1}Q\left(1+\frac{a-\left(n-1-j\right)}{n},k\right)\\ & =n^{nk}a!\prod_{j=0}^{n-1}Q\left(\frac{a+1+j}{n},k\right) \end{align*}(4)
\begin{align*} \left(nk+a\right)!_{n} & =a!_{n}\prod_{j=1}^{k}\left(nj+a\right)\\ & =a!_{n}\prod_{j=1}^{k}n\left(j+\frac{a}{n}\right)\\ & =n^{k}a!_{n}\prod_{j=1}^{k}\left(j+\frac{a}{n}\right)\\ & =n^{k}a!_{n}Q\left(\frac{a}{n}+1,k\right) \end{align*}ページ情報
タイトル | 簡単な関数を上昇階乗とべき乗を使って表す |
URL | https://www.nomuramath.com/peealpyj/ |
SNSボタン |
幾何級数・超幾何級数・超幾何関数・合流型超幾何関数・一般化超幾何関数の定義
基本的な関数の一般化超幾何関数表示
\[
\left(1+x\right)^{a}=F\left(-a;;-x\right)
\]
合流型超幾何微分方程式の解
\[
xy''\left(x\right)+\left(b-x\right)y'\left(x\right)-ay\left(x\right)=0
\]
一般化超幾何関数の微分と積分
\[
\frac{d}{dx}F\left(\boldsymbol{a};\boldsymbol{b};x\right)=\frac{\prod_{i=1}^{\dim\boldsymbol{a}}a_{i}}{\prod_{j=1}^{\dim\boldsymbol{b}}b_{j}}F\left(\boldsymbol{a}+\boldsymbol{1};\boldsymbol{b}+\boldsymbol{1};x\right)
\]